OJNS  >> Vol. 3 No. 4 (November 2015)

    盐城滨海湿地近现代碳、氮累积历史
    Recent History of Carbon and Nitrogen Accumulation Rates in Yancheng Coastal Wetland, China

  • 全文下载: PDF(1010KB) HTML   XML   PP.137-146   DOI: 10.12677/OJNS.2015.34018  
  • 下载量: 1,370  浏览量: 10,278   国家自然科学基金支持

作者:  

鲍锟山:中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,江苏 南京;
全桂香:盐城工学院环境学院,江苏 盐城;
刘复刚:齐齐哈尔大学理学院地理系,黑龙江 齐齐哈尔

关键词:
碳累积氮累积滨海湿地Carbon Accumulation Nitrogen Accumulation Coastal Wetland

摘要:

湿地生态系统仅占全球陆地面积的3%~6%,但其碳储量占全球陆地碳库的1/3,相当于大气中碳含量的75%。因此,湿地生态系统在全球碳、氮循环和气候变化研究中起着重要作用。然而,作为一种重要的湿地类型,滨海湿地碳累积变化远没有泥炭地研究广泛。本研究的主要目的是评估江苏盐城滨海湿地近现代碳、氮累积速率变化历史,并估算近150年来盐城湿地碳累积通量。利用210Pb放射性测年方法,结合沉积物干容重、碳和氮含量等基本理化参数,计算近现代碳累积速率(RERCA)和近现代氮累积速率(RERNA),进而估算近150年来碳储存通量。互花米草滩地和光滩沉积柱芯(SAF-1和BAF-1)的平均RERCA分别是165gC∙m−2∙a−1和116gC∙m−2∙a−1,平均RERNA分别是3.99gN∙m−2∙a−1和1.68gN∙m−2∙a−1。近150年来,RERCA和RERNA随着时间不断增加,展现出极强的固碳潜力。盐城湿地过去150年来的碳、氮累积通量被估算为17.4~24.8kgC∙m−2和0.25~0.59 kgN∙m−2。RERCA和RERNA之间有着显著的相关关系。本研究将有助于对滨海湿地碳、氮累积历史和潜力变化的评估,也能增进对在当前气候变化和人类活动双重影响下盐城滨海湿地的相应反馈作用的理解。

Wetland ecosystems account for only 3% - 6% of the world’s land surface, but the carbon (C) stock in these systems accounts for one-third of the global terrestrial C pool, which is equivalent to 75% of the C stock in the atmosphere. Therefore, wetland ecosystems play a key role in the study of global C and nitrogen (N) cycle and climate change. Nevertheless, as an important wetland type, coastal wetlands have been scarcely studied in term of C accumulation compared to the peatlands. The main objective of this study was to evaluate the recent rate of C accumulation (RERCA) and the recent rate of N accumulation (RERNA) in two kinds of coastal wetlands in Yancheng, Jiangsu province, and estimate the inventory of C accumulation over the last 150 years. Using sediment C and N content, dry bulk density, and Pb-210 dating, we determined the accumulation rates of C and N in profiles from Yancheng coastal wetland, from Yancheng coastal wetland, and then we estimated the flux of C storage in the past 150 years. With respective to the Spartinaalterniflora flat (SAF-1) and the bare flat (BAF-1), the RERCA ranged from 116 to 165 gC∙m−2∙a−1, and the RERNA ranged from 1.68 to 3.99 gN∙m−2∙a−1. There was an obvious increasing trend for RERCA and RERNA over the last 150 years, indicating a great potential in C sequestration in the sediments. The historical inventories of C and N were 17.4 - 24.8 kgC∙m−2 and 0.25 - 0.59 kgN∙m−2, respectively. The accumulation rates of C and N were directly related. The results would be helpful in evaluating the C and N accumulation history and sequestration potential in coastal wetland and understanding the feedback effects of the Yancheng coastal wetland under climate change and anthropogenic influence.

文章引用:
鲍锟山, 全桂香, 刘复刚. 盐城滨海湿地近现代碳、氮累积历史[J]. 自然科学, 2015, 3(4): 137-146. http://dx.doi.org/10.12677/OJNS.2015.34018

参考文献

[1] 段晓男, 王效科, 逯非, 等. 中国湿地生态系统固碳现状和潜力[J]. 生态学报, 2008, 28(2): 463-469.
[2] Charman, D.J., Beilman, D.W., Blaauw, M., Blaauw, M., Booth, R.K., Brewer, S., et al. (2013) Climate-Related Changes in Peatland Carbon Accumulation during the Last Millennium. Biogeosciences, 10, 929-944.
http://dx.doi.org/10.5194/bg-10-929-2013
[3] 葛全胜, 戴君虎, 何凡能, 等. 过去300年中国土地利用、土地覆被变化与碳循环研究[J]. 中国科学D辑: 地球科学, 2008, 38(2): 197-210.
[4] Gorham, E., Lehman, C., Dyke, A., Clymo, D. and Janssens, J. (2012) Long-Term Carbon Sequestration in North American Peatlands. Quaternary Science Reviews, 58, 77-82.
http://dx.doi.org/10.1016/j.quascirev.2012.09.018
[5] Ruppel, M., Valiranta, M., Virtanen, T. and Korhola, A. (2013) Postglacial Spatiotemporal Peatland Initiation and Lateral Expansion Dynamics in North America and Northern Europe. Holocene, 23, 1596-1606.
http://dx.doi.org/10.1177/0959683613499053
[6] Weckstrom, J., Seppa, H. and Korhola, A. (2010) Climatic Influence on Peatland Formation and Lateral Expansion in Sub-Arctic Fennoscandia. Boreas, 39, 761-769.
http://dx.doi.org/10.1111/j.1502-3885.2010.00168.x
[7] Gao, Y. and Couwenberg, J. (2014) Carbon Accumulation in a Permafrost Polygon Peatland: Steady Long Term Rates in Spite of Shifts between Dry and Wet Condition. Global Change Biology, 21, 803-815.
http://dx.doi.org/10.1111/gcb.12742
[8] Dommain, R., Couwenberg, J. and Joosten, H. (2011) Development and Carbon Sequestration of Tropical Peat Domes in South-East Asia: Links to Post-Glacial Sea-Level Changes and Holocene Climate Variability. Quaternary Science Reviews, 30, 999-1010.
http://dx.doi.org/10.1016/j.quascirev.2011.01.018
[9] Page, S., Rieley, J.O. and Banks, C.J. (2011) Global and Regional Importance of the Tropical Peatland Carbon Pool. Global Change Biology, 17, 798-818.
http://dx.doi.org/10.1111/j.1365-2486.2010.02279.x
[10] Bao, K., Yu, X., Jia, L. and Wang, G.P. (2010) Recent Carbon Accumulation in Changbai Mountain Peatlands, Northeast China. Mountain Research and Development, 30, 33-41.
http://dx.doi.org/10.1659/MRD-JOURNAL-D-09-00054.1
[11] Bao, K., Zhao, H., Xing, W., et al. (2011) Carbon Accumulation in Temperate Wetlands of Sanjiang Plain, Northeast China. Soil Science Society of America Journal, 75, 2386-2397.
http://dx.doi.org/10.2136/sssaj2011.0157
[12] Bao, K., Wang, G. and Xing, W. (2015) Accumulation of Organic Carbon over the Past 200 Years in Alpine Peatlands, Northeast China. Environmental Earth Science, 73, 7489-7503.
http://dx.doi.org/10.1007/s12665-014-3922-1
[13] Zhao, Y., Yu, Z., Tang, Y., et al. (2014) Peatland Initiation and Carbon Accumulation in China over the Last 50,000 Years. Earth Science Review, 128, 139-146.
http://dx.doi.org/10.1016/j.earscirev.2013.11.003
[14] Wang, M., Chen, H., Wu, N., et al. (2014) Carbon Dynamics of Peatlands in China during the Holocene. Quaternary Science Reviews, 99, 34-41.
http://dx.doi.org/10.1016/j.quascirev.2014.06.004
[15] 侯雪景, 印萍, 丁旋, 等. 青岛胶州湾大沽河口滨海湿地的碳埋藏能力[J]. 海洋地质前沿, 2012(28): 17-26.
[16] Chmura, G.L., Anisfeld, S.C., Cahoon, D.R., et al. (2003) Global Carbon Sequestration in Tidal, Saline Wetland Soils. Global Biogeochemical Cycles, 17, Article ID: GB1111.
http://dx.doi.org/10.1029/2002gb001917
[17] Choi, Y. and Wang, Y. (2004) Dynamics of Carbon Sequestration in a Coastal Wetland Using Radiocarbon Measurements. Global Biogeochemical Cycles, 18, Article ID: GB4016.
http://dx.doi.org/10.1029/2004GB002261
[18] 孙贤斌, 刘红玉. 江苏海滨湿地研究进展[J]. 海洋环境科学, 2011(30): 599-602.
[19] Gao, J., Bai, F., Yang, Y., et al. (2012) Influence of Spartina Colonization on the Supply and Accumulation of Organic Carbon in Tidal Salt Marshes of Northern Jiangsu Province, China. Journal of Coastal Research, 28, 486-498.
http://dx.doi.org/10.2112/JCOASTRES-D-11-00062.1
[20] 任美锷. 江苏海岸和海涂资源综合调查报告[M]. 北京: 海洋出版社, 1986: 517.
[21] Liu, Z., Pan, S., Liu, X., et al. (2010) Distribution of Cs-137 and Pb-210 in Sediments of Tidal Flats in North Jiangsu Province. Journal of Geography Science, 20, 91-108.
http://dx.doi.org/10.1007/s11442-010-0091-3
[22] 王爱军, 高抒, 贾建军, 等. 江苏王港盐沼的现代沉积速率[J]. 地理学报, 2005, 60(1): 61-70.
[23] 王爱军, 陈坚, 李东义, 等. 泉州湾海岸湿地沉积物C、N的空间变化[J]. 环境科学, 2007, 28(10): 2361-2367.
[24] Wang, X.C., Chen, R.F. and Berry, A. (2003) Sources and Preservation of Organic Matter in Plum Island Salt Marsh Sediments (MA, USA): Long-Chain N-Alkanes and Stable Carbon Isotope Compositions. Estuarine, Coastal and Shelf Science, 58, 917-928.
http://dx.doi.org/10.1016/j.ecss.2003.07.006
[25] Lau, S.S. and Chu, L.M. (1999) Contaminant Release from Sediments in a Coastal Wetland. Water Research, 33, 909- 918.
http://dx.doi.org/10.1016/S0043-1354(98)00286-3
[26] 曹磊, 宋金明, 李学刚, 等. 滨海盐沼湿地有机碳的沉积与埋藏研究进展[J]. 应用生态学报, 2013, 24(7): 2040- 2048.
[27] León, C.A. and Oliván, G. (2014) Recent Rates of Carbon and Nitrogen Accumulation in Peatlands of Isla Grande de Chiloé-Chile. Revista Chilena de Historia Natural, 87, 26.
http://dx.doi.org/10.1186/s40693-014-0026-y
[28] 高建华, 杨桂山, 欧维新. 苏北潮滩湿地不同生态带有机质来源辨析与定量估算[J]. 环境科学, 2005, 26(6): 51- 56.
[29] Jaenicke, J., Rieley, J., Mott, C., et al. (2008) Determination of the Amount of Carbon Stored in Indonesian Peatlands. Geoderma, 147, 151-158.
http://dx.doi.org/10.1016/j.geoderma.2008.08.008
[30] Beilman, D.W., MacDonald, G.M., Smith, L.C., et al. (2009) Carbon Accumulation in Peatlands of West Siberia over the Last 2000 Years. Global Biogeochemical Cycles, 23, Article ID: GB1012.
http://dx.doi.org/10.1029/2007gb003112
[31] Zauft, M., Fell, H., Glaber, F., et al. (2010) Carbon Storage in the Peatlands of Mecklenburg-Western Pomerania, Northeast Germany. Mires and Peat, 6, 1-12.
[32] Wellock, M.L., Reidy, B., Laperle, C.M., et al. (2011) Soil Organic Carbon Stocks of Afforested Peatlands in Ireland. Forestry, 84, 441-451.
http://dx.doi.org/10.1093/forestry/cpr046
[33] Weissert, L. and Disney, M. (2013) Carbon Storage in Peatlands: A Case Study on the Isle of Man. Geoderma, 204, 111-119.
http://dx.doi.org/10.1016/j.geoderma.2013.04.016
[34] Chapman, S.J., Bell, J., Donnelly, D., et al. (2009) Carbon Stocks in Scottish Peatlands. Soil Use and Management, 25, 105-112.
http://dx.doi.org/10.1111/j.1475-2743.2009.00219.x
[35] Turunen, J., Roulet, N., Moore, T., et al. (2004) Nitrogen Deposition and Increased Carbon Accumulation in Ombrotrophic Peatlands in Eastern Canada. Global Biogeochemical Cycles, 18, Article ID: GB3002.
http://dx.doi.org/10.1029/2003GB002154
[36] Buffam, I., Carpenter, S.R., Yeck, W., et al. (2010) Filling Holes in Regional Carbon Budgets: Predicting Peat Depth in a North Temperate Lake District. Journal of Geophysical Research—Biogeosciences, 115, 1-16.
http://dx.doi.org/10.1029/2009JG001034
[37] Bernal, B. and Mitsch, W.J. (2008) A Comparison of Soil Carbon Pools and Profiles in Wetlands in Costa Rica and Ohio. Ecological Engineering, 34, 311-323.
http://dx.doi.org/10.1016/j.ecoleng.2008.09.005
[38] Chimner, R.A. and Karberg, J.M. (2008) Long-Term Carbon Accumulation in Two Tropical Mountain Peatlands, Andes Mountain, Ecuador. Mires and Peat, 3, 1-10.
[39] Mills, A.J. and Cowling, R.M. (2006) Rate of Carbon Sequestration at Two Thicket Restoration Sites in the Eastern Cape, South Africa. Restoration Ecology, 14, 38-49.
http://dx.doi.org/10.1111/j.1526-100X.2006.00103.x
[40] Aucour, A., Bonnefille, R. and Hillaire-Marcel, C. (1999) Source and Accumulation Rates of Organic Carbon in an Equatorial Peat Bog (Burundi, East Africa) during the Holocene: Carbon Isotope Constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 150, 179-189.
http://dx.doi.org/10.1016/S0031-0182(98)00222-3
[41] Saintilan, N., Rogers, K., Mazumder, D., et al. (2013) Allochthonous and Autochthonous Contributions to Carbon Accumulation and Carbon Store in Southeastern Australian Coastal Wetlands. Estuarine, Coastal and Shelf Science, 128, 84-92.
http://dx.doi.org/10.1016/j.ecss.2013.05.010