JWRR  >> Vol. 4 No. 6 (December 2015)

    水动力条件对三峡库区次级支流优势藻种生长的影响
    The Influence of Hydrodynamic Conditions on the Dominant Edge Growth of the Secondary Tributary at Three Gorges Reservoir

  • 全文下载: PDF(885KB) HTML   XML   PP.530-536   DOI: 10.12677/JWRR.2015.46066  
  • 下载量: 1,304  浏览量: 3,060   国家自然科学基金支持

作者:  

安 强,於 阳,黄源生,黄宁秋,蒋韵秋:重庆大学城市建设与环境工程学院,重庆

关键词:
水动力条件三峡库区次级支流优势藻种Hydrodynamic Conditions Three Gorges Reservoir Area Secondary Branch Dominant Algae

摘要:

本研究以嘉陵江支流清水溪为研究对象,取清水溪磁器口段原水进行流速、紊流实验。结果表明,当Chla达到峰值时(14天)硅藻为显著优势藻种,其次为蓝藻、绿藻。当水流速度为0.00~0.12 m/s、紊流耗散率为0.00~0.62 m2/s3× 10−4时对水体中藻类的增长有促进作用,Chla峰值分别为0.124 mg/l、0.158 mg/l,随着流速、紊流耗散率的继续增加藻类生长呈下降趋势,且流速、紊流耗散率越大抑制越明显。当以单一硅藻为研究对象时均得到相似的结果。因此,库区次级支流水动力条件的改变是引起库区次级支流水华爆发的原因。

In this study, Qingshui Brook, one of the tributaries of the Jialing River was taken as case study. The ve-locity experiment and turbulent experiment were both demonstrated by using the raw water from the Qingshui Brook in the Ciqikou section. The results show that the diatom is the dominant algae when the Chla reached the peak (14 days), followed by blue algae, green algae. Algae’s growth could be promoted while the flow rate is 0.00 - 0.12 m/s and the turbulence dissipation rate is 0.00 - 0.62 m2/s3× 10−4. At that time, the peaks of the Chla are 0.124 mg/l, 0.158 mg/l. When the flow velocity and the turbulence dissipation rate continue to increase, the growth of the algae is declined. The greater the flow velocity and the turbulence dissipation rates, the more obvious the inhibiting effects. The study shows the similar results when a single diatom is used. It is concluded that the change of hydrodynamic conditions of the secondary tributary at Three Gorges Reservoir is the cause of the local algae bloom.

文章引用:
安强, 於阳, 黄源生, 黄宁秋, 蒋韵秋. 水动力条件对三峡库区次级支流优势藻种生长的影响[J]. 水资源研究, 2015, 4(6): 530-536. http://dx.doi.org/10.12677/JWRR.2015.46066

参考文献

[1] 孟春红, 赵冰. 三峡水库蓄水后水文特性和污染因素分析[J]. 人民长江, 2007, 8: 26-27. MENG Chunhong, ZHAO Bin. The hydrological features and pollution factor analysis after the impoundment of the Three Gorges Reservoir. Yangtze River, 2007, 8: 26-27. (in Chinese)
[2] 王敏, 张智, 等. 嘉陵江出口段硅藻水华发生规律[J]. 环境科学研究, 2011, 24(2): 191-198. WANG Min, ZHANG Zhi, et al. Occurrence regularity of diatom bloom in the confluence section of Jialing River. Journal of Environmental Sciences, 2011, 24(2): 191-198. (in Chinese)
[3] 黄宁秋, 安强, 龙天渝, 等. 流速变化对于三峡库区次级支流富营养状况的影响[J]. 四川大学学报(工程科学版), 2012, S2: 206-210. HUANG Ningqiu, AN Qiang, LONG Tianyu, et al. Speed change for the influence of the secondary tributary of the Three Gorges Reservoir eutrophication status. Journal of Sichuan University (Engineering Science Edition), 2012, S2: 206-210. (in Chinese)
[4] ORLINS, J. J., GULLIVER, J. S. Turbulence quantification and sediment resuspension in oscillating grid chamber. Experiment in Fluids, 2003, 34(6): 662- 677.
http://dx.doi.org/10.1007/s00348-003-0595-z
[5] THONPSON, S. M., TURNER, J. S. Mixing across an interface due to turbulence generated by an oscillating grid. Journal of Fluid Mechanics, 1975, 67(2): 349-368.
http://dx.doi.org/10.1017/S0022112075000341
[6] 雷欢, 梁银栓, 等. 三峡水库童庄河浮游植物及其与水质的关系[J]. 湖泊科学, 2010, 2(22): 195-200. LEI Huan, LIANG Yinshuan, et al. The Three Gorges Reservoir TongZhuangHe phytoplankton and its relationship with water. Journal of Lake Sciences. 2010, 2(22): 195-200. (in Chinese)
[7] 胡建林, 刘国祥, 等. 三峡库区重庆段主要支流春季浮游植物调查[J]. 水生生物学报, 2006, 30(1): 116-119. HU Jianlin, LIU Guoxiang, et al. Investigation on the phytoplankton of spring from Three Gorges Reservoir in Chongqing. Acta Hydrobiologica Sinica, 2006, 30(1): 116-119. (in Chinese)
[8] 王培丽. 从水动力和营养角度探讨汉江硅藻水华发生机制的研究[D]. 武汉: 华中农业大学硕士论文, 2010. WANG Peili. From the perspective of hydrodynamic and nutrition of the Han River diatom bloom mechanism research. Wuhan: Huazhong Agricultural University, 2010. (in Chinese)