流体动力学  >> Vol. 4 No. 3 (September 2016)

理想法拉第型磁流体通道特性分析
Performance Analysis for Ideal Faraday-Type Magnetohydrodynamic (MHD) Channel

DOI: 10.12677/IJFD.2016.43006, PDF, HTML, XML, 下载: 1,340  浏览: 3,389 

作者: 陈峰:中国空气动力研究与发展中心,高速空气动力学研究所,四川 绵阳

关键词: 磁流体通道磁流体发电磁流体加速负载系数磁作用数MHD Channel MHD Generation MHD Acceleration Load Factor Magnetic Interaction Parameter

摘要: 为了获得负载系数、磁作用数等参数对理想法拉第磁流体通道特性的影响规律,本文建立了理想法拉第型磁流体通道一维数学模型。在磁流体通道电能输出和输入模式下,通过对微分方程及数值结果进行分析,获得了磁作用数、负载系数、马赫数等参数对磁流体通道的局部及整体特性的影响规律。磁作用数对磁流体通道参数影响成线性关系,磁作用数越大,磁流体动力效应越显著;负载系数取值决定了马赫数或速度的变化趋势;在设计磁流体通道时应综合考虑通道尺寸,马赫数变化,合理选择负载系数,使磁流体通道性能达到最优。
Abstract: In order to investigate the influence of magnetic interaction parameter and load factor on the performance of ideal faraday-type magnetohydrodynamic (MHD) channel, a one-dimensional ideal faraday-type MHD channel model is built. The local and global influence disciplinarian of the magnetic interaction parameter, load factor and Mach number on the MHD channel is obtained by the analysis of the differential equations and numerical results at the power output and input model. The magnetic interaction parameter has a linear effect on the MHD channel, and the load factor determines the Mach number and speed trends. The channel size, Mach number and load factor should be considered to optimize the design of MHD channel.

文章引用: 陈峰. 理想法拉第型磁流体通道特性分析[J]. 流体动力学, 2016, 4(3): 43-53. http://dx.doi.org/10.12677/IJFD.2016.43006

参考文献

[1] Resler, E.L. and Sears, W.R. (1958) The Prospects for Magneto-Aerodynamics. Journal of the Aeronautical Sciences, 25, 235-245.
[2] Macheret, S.O., Shneider, M.N. and Miles, R.B. (2001) Electron Beam Generated Plasmas in Hypersonic MHD Channels. AIAA Journal, 39, 1127-1138. http://dx.doi.org/10.2514/2.1426
[3] Macheret, S.O., Shneider, M.N. and Miles, R.B. (2002) MHD Power Extraction from Cold Hypersonic Air Flows with External Ionizers. Journal of Propulsion and Power, 18, 424-431.
http://dx.doi.org/10.2514/2.5951
[4] Chapman, J.N., Lineberry, J.T., Schmidt, H.J., et al. (2004) Flightweight Magnets for Advanced Power and Propulsion Applications. AIAA, 2004-1372.
http://dx.doi.org/10.2514/6.2004-1372
[5] Sheikin, E.G. and Kuranov, A.L. (2004) Scramjet with MHD Bypass under “Ajax” Concept. AIAA, 2004-1192.
http://dx.doi.org/10.2514/6.2004-1192
[6] Tang, J.F., Bao, W. and Yu, D.R. (2006) The Influence of Energy-Bypass on the Performance of AJAX. AIAA, 2006- 1376.
[7] Vanka, S.P. and Ahluwalia, R.K. (1981) Three-Dimensional Flow and Thermal Development in Magnetohydrodynamic Channels. Energy, 6, 218-224.
http://dx.doi.org/10.2514/3.62593
[8] 刘鉴民. 磁流体发电[M]. 北京: 机械工业出版社, 1984.
[9] Kuranov, A.L. and Sheikin, E.G. (2003) Magnetohydrodynamic Control on Hyper-sonic Aircraft under “AJAX” Concept. Journal of Spacecraft and Rockets, 40, 174-182.
http://dx.doi.org/10.2514/2.3951
[10] David, W.B. and Unmeel, B.M. (2003) Experimental Demonstration of Magne-to-Hydro-Dynamics (MHD) Acceleration. AIAA, 2003-4285.