PM  >> Vol. 6 No. 5 (September 2016)

    Wronsky行列式与具有最大亏量和的亚纯函数
    Wronsky Determinant and Meromorphic Functions with Maximal Deficiency Sum

  • 全文下载: PDF(348KB) HTML   XML   PP.418-426   DOI: 10.12677/PM.2016.65057  
  • 下载量: 783  浏览量: 3,461   国家自然科学基金支持

作者:  

谢 佳,邓炳茂,李 菁:华南农业大学应用数学研究所,广东 广州

关键词:
亚纯函数最大亏量和Wronsky行列式Meromorphic Function Maximal Deficiency Sum Wronsky Determinant

摘要:

f是复平面上满足 的超级有穷的超越亚纯函数, k为正整数, fk+1 个线性独立的小函数,且满足 为常数, ,则有

Let f be a transcendental meromorphic function satisfying , and k is a positive integer; let be linearly independent small functions of f  , and is a constant; let . Then

文章引用:
谢佳, 邓炳茂, 李菁. Wronsky行列式与具有最大亏量和的亚纯函数[J]. 理论数学, 2016, 6(5): 418-426. http://dx.doi.org/10.12677/PM.2016.65057

参考文献

[1] Yang, L. (1993) Value Distribution Theory. Springer-Verlag, Berlin.
[2] Hayman, W.K. (1964) Meromorphic Functions. Clarendon Press, Oxford.
[3] Yang, L. (1990) Precise Estimate of Total Deficiency of Meromorphic Derivatives. Journal d’Analyse Mathematique, 55, 287-296. http://dx.doi.org/10.1007/BF02789206
[4] 仇惠玲, 曾翠萍, 方明亮. 导函数具有最大亏量和的杨乐问题[J]. 中国科学: 数学, 2013, 43(12): 1177-1184.
[5] Singh, S.K. and Kulkarni, V.N. (1973) Characteristic Function of a Meromorphic Function and Its Derivatives. Annales Polonici Mathematici, 28, 123-133.
[6] Fang, M.L. (2000) A Note on a Result of Singh and Kulkarni. International Journal of Mathematics and Mathematical Sciences, 23, 285-288. http://dx.doi.org/10.1155/S016117120000082X
[7] Frank, G. and Weissenborn, G. (1989) On the Zeros of Linear Differential Polynomials of Meromorphic Functions. Complex Variables, Theory and Application, 12, 77-81. http://dx.doi.org/10.1080/17476938908814355
[8] Lahiri, I. and Banerjee, A. (2004) Value Distribution of a Wronskian. Portugaliae Mathematica (Nova Série), 61, 161- 175.