智能电网  >> Vol. 7 No. 2 (April 2017)

采用局域信息的孤岛微电网分布式控制方法
Distributed Control Method with Local Information for Islanded Microgrids

DOI: 10.12677/SG.2017.72016, PDF, HTML, XML, 下载: 818  浏览: 1,238  国家自然科学基金支持

作者: 康文发, 李 强, 彭琮波, 高孟凯:输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆;陈 涛, 高 晋:国网重庆市电力公司电力科学研究院,重庆

关键词: 孤岛微电网多Agent系统分布式控制第二级控制网络化控制Islanded Microgrid Multi-Agent System (MAS) Distributed Control Secondary Control Networked Control

摘要: 本文提出一种仅利用局域信息的孤岛微电网分布式控制方法。该方法利用agent构造通信网络,并进行局域信息交换。Agent根据收集的信息,计算下一时刻分布式电源的输出设定值,从而调整下一时刻分布式电源的输出。本文系统地给出,从任意通信网络为agent导出分布式控制律的一般方法,并且在理论上证明,该分布式控制律不仅能够保证微电网内功率平衡,而且能够使得可控分布式电源输出与其容量成比例。最后,设计两组实验,验证文中提出的分布式控制律有效性。仿真结果表明,当环境和负载变化时,文中提出的方法能够维持微电网内功率平衡,保证功率在可控分布式电源之间按照容量大小进行分配。
Abstract: A distributed control method with local information for islanded microgrids is proposed in this paper. First, a communication network composed of agents is established, on which local infor-mation is exchanged among agents, and agents compute setting points and regulate outputs of distributed generation at the next time step. Furthermore, a systematic method is presented to derive a set of control laws from any given communication network. Moreover, it is proved that the control laws not only balance the system, but also make the outputs of controllable distributed generation proportional to their capacities. Finally, two cases are designed to evaluate the performance of the proposed method. The simulation results show that the proposed methods can maintain power supply-demand balance, and also can guarantee power dispatched proportionally, when load demand and environmental conditions fluctuate.

文章引用: 康文发, 李强, 彭琮波, 高孟凯, 陈涛, 高晋. 采用局域信息的孤岛微电网分布式控制方法[J]. 智能电网, 2017, 7(2): 142-151. https://doi.org/10.12677/SG.2017.72016

参考文献

[1] Lasseter, R.H. and Paigi, P. (2004) Microgrid: A Conceptual Solution. Power Electronics Specialists Conference, 6, 4285-4290.
https://doi.org/10.1109/pesc.2004.1354758
[2] Katiraei, F., Iravani, R., Hatziargyriou, N., et al. (2008) Microgrids Management. IEEE Power & Energy Magazine, 6, 54-65.
https://doi.org/10.1109/MPE.2008.918702
[3] 马添翼, 金新民, 梁建钢. 孤岛模式微电网变流器的复合式虚拟阻抗控制策略[J]. 电工技术学报, 2013, 28(12): 304-312.
[4] Olivares, D.E., Mehrizi-Sani, A., Etemadi, A.H., et al. (2014) Trends in Microgridcontrol. IEEE Transactions on Smart Grid, 5 1905-1919.
https://doi.org/10.1109/TSG.2013.2295514.
[5] 易永辉, 任志航, 马红伟, 等. 分布式电源高渗透率的微电网快速稳定控制技术研究[J]. 电力系统保护与控制, 2016, 44(20): 31-36.
[6] 杨欢, 赵荣祥, 辛焕海, 等. 海岛电网发展现状与研究动态[J]. 电工技术学报, 2013, 28(11): 95-105.
[7] 张建华, 于雷, 刘念, 等. 含风/光/柴/蓄及海水淡化负荷的微电网容量优化配置[J]. 电工技术学报, 2014(2): 102-112.
[8] Pogaku, N., Prodanovic, M. and Green, T.C. (2007) Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid. IEEE Transactions on Power Electronics, 22, 613-625.
https://doi.org/10.1109/TPEL.2006.890003
[9] 徐玉琴, 马焕均. 基于改进下垂控制的逆变器并联运行技术[J]. 电力系统保护与控制, 2015, 43(7): 103-107.
[10] 高晓芝, 李林川, 张蕾. 含电压源型逆变器和同步电机接口的微网控制[J]. 电力系统保护与控制, 2012, 40(23): 145-150.
[11] 陈丽娟, 王致杰. 基于改进下垂控制的微电网运行控制研究[J]. 电力系统保护与控制, 2016(4): 16-21.
[12] Tan, K.T., Peng, X.Y., So, P.L., et al. (2012) Centralized Control for Parallel Operation of Distributed Generation Inverters in Microgrids. IEEE Transactions on Smart Grid, 3, 1977-1987.
https://doi.org/10.1109/TSG.2012.2205952
[13] Vasquez, J.C., Guerrero, J.M., Miret, J., et al. (2010) Hierarchical Control of Intelligent Microgrids. IEEE Industrial Electronics Magazine, 4, 23-29.
https://doi.org/10.1109/MIE.2010.938720.
[14] Guerrero, J.M., Vasquez, J.C., Matas, J., et al. (2009) Hierar-chical Control of Droop-Controlled DC and AC Microgrids—A General Approach towards Standardization. IEEE Transactions on Industrial Electronics, 58, 158-172.
https://doi.org/10.1109/TIE.2010.2066534
[15] Guerrero, J.M., Loh, P.C., Lee, T.L., et al. (2013) Advanced Control Architectures for Intelligent Microgrids—Part I: Decentralized and Hierarchical Control. IEEE Transactions on Industrial Electronics, 60, 1254-1262.
https://doi.org/10.1109/TIE.2012.2194969
[16] Wu, X., Shen, C. and Iravani, R. (2016) A Distributed, Cooperative Frequency and Voltage Control for Microgrids. IEEE Transactions on Smart Grid, PP, 1.
[17] Wang, Y., Chen, Z., Wang, X., et al. (2015) An Estimator-Based Distributed Voltage-Predictive Control Strategy for AC Islanded Microgrids. IEEE Transactions on Power Electronics, 30, 3934-3951.
https://doi.org/10.1109/TPEL.2014.2345696
[18] Lu, X., Yu, X., Lai, J., et al. (2016) Distributed Secondary Voltage and Frequency Control for Islanded Microgrids with Uncertain Communication Links. Transactions on Industrial Informatics, PP, 1.
[19] 贾星蓓, 窦春霞, 岳东, 等. 基于多代理系统的微电网多尺度能量管理[J]. 电工技术学报, 2016, 31(17): 63-73.
[20] 李中雷, 宋蕙慧, 曲延滨. 基于母线Agent的微电网孤岛协调控制策略[J]. 电工技术学报, 2015(S1): 370-376.
[21] Li, Q., Chen, F., Chen, M., et al. (2016) Agent-Based Decentralized Control Method for Islanded Microgrids. IEEE Transactions on Smart Grid, 7, 637-649.
[22] Li, Q., Peng, C., Chen, M., et al. (2017) Networked and Distributed Control Method with Optimal Power Dispatch for Islanded Microgrids. IEEE Transactions on Industrial Electronics, 64, 493-504.
https://doi.org/10.1109/TIE.2016.2598799
[23] Chen, F., Chen, M., Li, Q., et al. (2016) Multiagent-Based Reactive Power Sharingand Control Model for Islanded Microgrids. IEEE Transactions on Sustainable Energy, 7, 1232-1244.
https://doi.org/10.1109/TSTE.2016.2539213
[24] Majumder, R., Ghosh, A., Ledwich, G., et al. (2010) Power Management and Power Flow Control with Back-to-Back Converters in a Utility Connected Microgrid. IEEE Transactions on Power Systems, 25, 821-834.
https://doi.org/10.1109/TPWRS.2009.2034666
[25] Ren, W., Beard, R.W. and Mclain, T.W. (2005) Coordination Variables and Consensus Building in Multiple Vehicle Systems. Lecture Notes in Control & Information Sciences, 309, 439-442.
[26] Liu, J. and Morse, A.S. (2011) Accelerated Linear Iterations for Distributed Averaging. Annual Reviews in Control, 35, 160-165.
https://doi.org/10.1016/j.arcontrol.2011.10.005