MS  >> Vol. 7 No. 3 (May 2017)

    2A10铝合金铆钉电磁铆接微观组织演化研究
    Investigation on Microstructure Evolution of 2A10 Aluminum Alloy Rivet in Electromagnetic Riveting

  • 全文下载: PDF(1086KB) HTML   XML   PP.260-265   DOI: 10.12677/MS.2017.73036  
  • 下载量: 67  浏览量: 93  

作者:  

黄宗斌,韦超忠,瞿 刚,徐志丹:上汽通用五菱汽车股份有限公司,广西 柳州

关键词:
电磁铆接2A10 铝合金微观组织硬度Electromagnetic Riveting 2A10 Aluminum Alloy Microstructures Hardness

摘要:

本文以2A10铝合金铆钉为材料,研究高速冲击电磁铆接后铆钉镦头微观组织演化,采用金相和透射电镜手段进行分析,结果表明高速冲击作用导致塑性变形主要集中于铆钉镦头的绝热剪切带区域,绝热剪切带宽度约为100 μm。TEM组织表明绝热剪切带内部产生宽度0.5 μm层片状亚晶,并且亚晶内部存在大量缠结的位错。剧烈塑性变形的绝热剪切带显微硬度明显高于其他区域,并且铆钉镦头硬度分布与变形组织分布一致。

In this paper, 2A10 aluminum alloy rivets were used for electromagnetic riveting experiments. The microstructure evolution in rivet tail was investigated after electromagnetic riveting. The mi-crostructure evolutions were analyzed by the optical microscope and transmission electron mi-croscope. Results showed that plastic deformations mainly concentrated in adiabatic shear band of rivet tail due to the high speed impact. The width of adiabatic shear band was about 100 μm. TEM observations demonstrated that lamellar sub-grains with the width of 0.5 μm generated in adiabatic shear band, and many tangled dislocations existed within them. The hardness values in adiabatic shear band with severe plastic deformations were significantly higher than that of other zone, and the hardness distribution law accorded with deformation microstructure distributions.

文章引用:
黄宗斌, 韦超忠, 瞿刚, 徐志丹. 2A10铝合金铆钉电磁铆接微观组织演化研究[J]. 材料科学, 2017, 7(3): 260-265. https://doi.org/10.12677/MS.2017.73036

参考文献

[1] 邓江华, 李春峰, 于海平, 江洪伟. 电磁铆接技术[J]. 锻压技术, 2010, 35(3): 1-5.
[2] 曹增强. 国外电磁铆接技术发展状况[J]. 航空工艺技术, 1997(4): 46-48.
[3] 瞿履和. 国外电磁铆接技术的进展[J]. 航空工艺技术, 1997(4): 24-25.
[4] 邓江华. 电磁铆接数值模拟与实验研究[D]. [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2008: 1-161.
[5] Deng, J.H., Yu, H.P. and Li, C.F. (2009) Numerical and Experimental Investigation of Electromagnetic Riveting. Materials Science and Engineering A, 499, 242- 247. http://dx.doi.org/10.1016/j.msea.2008.05.049
[6] 卢秋红, 赵伟松, 隋曼龄. 液氮温度下动态塑性形变法制备的纳米孪晶铜结构的研究[J]. 金属学报, 2006, 42(9): 909-913.
[7] Liu, Z.L., You, X.C. and Zhuang, Z.A. (2008) A Mesoscale Investigation of Strain Rate Effect on Dynamic Deformation of Single Crystal Copper. International Journal of Solids and Structures, 45, 3674-3687. http://dx.doi.org/10.1016/j.ijsolstr.2007.08.032
[8] Xiao, G.H., Tao, N.R. and Lu, K. (2009) Microstructures and Mechanical Prop-erties of a Cu-Zn Alloy Subjected to Cryogenic Dynamic Plastic Deformation. Materials Science and Engineering A, 513-514, 13-21. http://dx.doi.org/10.1016/j.msea.2009.01.022
[9] Deng, J.H., Tang, C., Fu, M.W. and Zhan, Y.R. (2014) Effect of Discharge Voltage on the Deformation of Ti Grade 1 Rivet in Electromagnetic Riveting. Materials Science and Engineering A, 591, 26- 32. http://dx.doi.org/10.1016/j.msea.2013.10.084