MS  >> Vol. 7 No. 3 (May 2017)

    β-Si3N4转变为β-C3N4的最可能路径以及两者弹性、硬度的对比研究
    The Most Probable Path of β-Si3N4Transforming to β-C3N4 and the Comparison of Their Elasticity and Hardness

  • 全文下载: PDF(761KB) HTML   XML   PP.266-274   DOI: 10.12677/MS.2017.73037  
  • 下载量: 190  浏览量: 247   国家自然科学基金支持

作者:  

黄 宇,袁婷婷,陈志谦:西南大学 材料与能源学部,重庆

关键词:
第一性原理转变路径弹性硬度First-Principles Transition Path Elasticity Hardness

摘要:

本文基于密度泛函理论的第一性原理,运用平面波超软赝势和广义梯度近似(GGA)势场计算了C原子替换β-Si3N4中Si原子过程中各结构的体系能量,以此来寻找β-Si3N4转变为β-C3N4的最可能路径。另外计算和对比了β-Si3N4和β-C3N4的弹性和硬度。结果显示,β-C3N4的弹性模量E、体弹模量B、剪切模量G和硬度都比β-Si3N4大,原因在于β-C3N4中的C-N键比β-Si3N4中的Si-N键强度更高,因此β-C3N4原子间的结合力更大。β-C3N4良好的稳定性以及优异的力学性能决定了其将具有广泛的应用。

Based on the first-principles of density functional theory with plane wave ultrasoft pseudopotential method and the generalized gradient approximation (GGA) potential field, we calculated the system energy of each structure in the process of replacing the Si atoms in β-Si3N4 structure with C atoms in order to find the most likely path of β-Si3N4 converting into β-C3N4. The elasticity and hardness of β-Si3N4 and β-C3N4 were also calculated and compared. The results show that the elastic modulus E, bulk modulus B, shear modulus G and hardness of β-C3N4 are larger than that of β-Si3N4. The reason is that the strength of the C-N bond in β-C3N4 is higher than the strength of the Si-N bond in β-Si3N4, as a result, the binding force between β-C3N4 atoms is greater. The excellent stability and mechanical properties of β-C3N4 determine a wide range of its applications.

文章引用:
黄宇, 袁婷婷, 陈志谦. β-Si3N4转变为β-C3N4的最可能路径以及两者弹性、硬度的对比研究[J]. 材料科学, 2017, 7(3): 266-274. https://doi.org/10.12677/MS.2017.73037

参考文献

[1] Liu, A.Y. and Cohen, M.L. (1989) Prediction of New Low Compressibility Solids. Science, 245, 841-842.
https://doi.org/10.1126/science.245.4920.841
[2] Teter, D.M. and Hemley, R.J. (1996) Low-Compressibility Carbon Nitrides. Science, 271, 53-55.
https://doi.org/10.1126/science.271.5245.53
[3] KundooS,Banerjee A N,Saha P, et al. (2003) Synthesis of Crystalline Carbon Nitride Thin Films by Electrolysis of Methanolurea Solution. Materials Letters, 57, 2193-2197.
[4] Wang, T.S., Yu, D.L., Tian, Y.J., et al.(2001) Cubic-C3N4 Nanoparticles Synthesized in CNx/TiNx Multilayer Films. Chemical Physics Letters, 334, 7-11.
[5] Yu, D.L., Xiao, F.R., Wang, T.S., et al. (2000) Synthesis of Graphite-C3N4 Crystal by Ion Beam Sputtering. Journal of Materials Science Letters, 19, 553-556.
https://doi.org/10.1023/A:1006761724574
[6] Niu, C.M., Lu, Y.Z. and Lieber, C.M. (1993) Experimental Real-ization of the Covalent Solid Carbon Nitride. Science, 261, 334-337.
https://doi.org/10.1126/science.261.5119.334
[7] Sharma, A.K., Ayyub, P., Multani, M.S., et al. (1996) Synthesis of Crystalline Carbon Nitride Thin Films by Laster Processing at a Liquid-Solid Interface. Applied Physics Letters, 69, 3489-3491.
https://doi.org/10.1063/1.117261
[8] Montigaud, H., Tanguy, B., Demazeau, G., et al. (2000) C3N4: Dream or Reality? Solvothermal Synthesis as Macroscopic Samples of the C3N4 Graphitic Form. Journal of Materials Science, 35, 2547-2552.
https://doi.org/10.1023/A:1004798509417
[9] Matin-Gil, J., Martin-Gil, F.J., Sarikaya, M., et al. (1997) Evidence of a Low Compressibility Carbon Nitride with Defect-Zincblende Structure. Journal of Applied Physics, 81, 2555-2559.
https://doi.org/10.1063/1.364301
[10] Ruan, L.W., Zhu, Y.J., Qiu, L.G., et al. (2013) The First-Principles Study of Basic Properties of C3N4. Journal of Anhui University (Natural Science Edition), 37, 78-88.
[11] 段玉华, 张开明, 谢希德. β-C3N4, β-Si3N4和β-Ge3N4的能带结构. 物理学报, 1996, 45(3): 512-517.
[12] Ma, Q.H., Tian, J.H., Wang, G.M., et al. (2011) First-Principles Study of Cubic C3N4 Ceramic. Journal of Ceramics, 32, 461-463.
[13] Hill, R. (1952) The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65, 349-354.
https://doi.org/10.1088/0370-1298/65/5/307
[14] Voigt, W. (1928) Lehrbuch der Kristallphysik: Teubner-Leipzig. Macmillan, New York.
[15] Reuss, A. and Angew, Z. (1929) Calculation of the Flow Limits of Mixed Crystals on the Basis of the Plasticity of Monocrystals. Zeitschrift für Angewandte Mathematik und Mechanik, 9, 49-58.
https://doi.org/10.1002/zamm.19290090104
[16] Bouhemadou, A. (2010) First-Principles Study of Structural, Electronic and Elastic Properties of Nb4AlC3. Brazilian Journal of Physics, 40, 52-57.
[17] Ravindran, P., Fast, L., Korzhaxyi, P.A., et al. (1998) Density Functional Theory for Calculation of Elastic Properties of Orthorhombic Crystals: Application to TiSi2. Journal of Applied Physics, 84, 4891-4904.
https://doi.org/10.1063/1.368733
[18] Honhenberg, P. and Kohn, W. (1964) Inhomogeneous Electron Gas. Phys-ical Review, 136, 864-871.
https://doi.org/10.1103/PhysRev.136.B864
[19] Segall, M.D., Lindan, P.J.D., Probert, M.J., et al. (2002) First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. Journal of Physics: Condensed Matter, 14, 2717.
https://doi.org/10.1088/0953-8984/14/11/301
[20] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865.
https://doi.org/10.1103/PhysRevLett.77.3865
[21] Vanderbilt, D. (1990) Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Physical Review B, 41, 7892-7895.
https://doi.org/10.1103/PhysRevB.41.7892
[22] Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Bril-louin-Zone Integrations. Physical Review B, 13, 5188- 5192.
https://doi.org/10.1103/PhysRevB.13.5188
[23] Broyden, C.G. (1970) The Convergence of a Class of Dou-ble-Rank Minimization Algorithms. 1. General Considerations. IMA Journal of Applied Mathematics, 6, 76-90.
https://doi.org/10.1093/imamat/6.1.76
[24] Fletcher, R. (1970) A New Approach to Variable Metric Algorithms. The Computer Journal, 13, 317-322.
https://doi.org/10.1093/comjnl/13.3.317
[25] Goldfarb, D. (1970) A Family of Variable-Metric Methods Derived by Variational Means. Mathematics of Computation, 24, 23-26.
https://doi.org/10.1090/S0025-5718-1970-0258249-6
[26] Shanno, D.F. (1970) Conditioning of Quasi-Newton Methods for Function Minimization. Mathematics of Computation, 24, 647-656.
https://doi.org/10.1090/S0025-5718-1970-0274029-X
[27] 陈洪荪. 金属的弹性各向异性[M]. 北京: 冶金工业出版社, 1996: 22-81.
[28] 田莳. 材料物理性能[M]. 北京: 北京航空航天大学出版社, 2004: 377-381.
[29] 谢贻权, 林钟祥, 丁皓江. 弹性力学[M]. 杭州: 浙江大学出版社, 1988: 82-86.
[30] Sin’ko, G.V. and Smirnov, N.A. (2002) Ab Initio Calculations of Elastic Constants and Thermodynamic Properties of bcc, fcc, and hcp Al Crystals under Pressure. Journal of Physics: Condensed Matter, 14, 6989-7005.
https://doi.org/10.1088/0953-8984/14/29/301
[31] Levine, J.B., Tolbert, S.H. and Kaner, R.B. (2009) Advance-ments in the Search for Superhard Ultra-Incompressible Metal Borides. Advanced Functional Materials, 19, 3519-3553.
https://doi.org/10.1002/adfm.200901257
[32] Pugh, S.F. (1954) Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45, 823-843.
https://doi.org/10.1080/14786440808520496