BR  >> Vol. 6 No. 3 (May 2017)

    大规模开发及特性分析十字花科SSR分子标记及其数据库的构建
    Large-Scale Development and Character Analysis of SSR Markers and Database Build in Brassicaceae

  • 全文下载: PDF(2939KB) HTML   XML   PP.86-95   DOI: 10.12677/BR.2017.63013  
  • 下载量: 94  浏览量: 142   科研立项经费支持

作者:  

杨帅:山东农业大学植物保护学院,山东 泰安;济南大学生命科学院,山东 济南;
李慧:济南大学生命科学院,山东 济南;
侯欣,张丽:山东农业大学植物保护学院,山东 泰安

关键词:
十字花科SSR特异引物通用引物数据库Brassicaceae SSR Specific Primers Universal Primers Database

摘要:
十字花科在植物界中是一种极具价值的科,简单重复序列(Simple Sequence Repeats, SSR)在十字花科的研究中发挥着及其重要的作用。本研究利用已知13个十字花科物种的基因组,借助生物信息学和比较基因组学的方法,获得了1,786,619个SSR位点及1,919,464对SSR引物。结果显示SSR位点广泛分布于十字花科物种的基因组中,其中1~3单元的重复在基因组和基因序列中占有率较高,二单元重复中的AT/TA重复单元的数目占总数目的大部分。利用435,414对物种特异性SSR,可以进行十字花科物种关联分析。11对通用引物的开发,说明了十字花科物种内存在一致性区段,可以进行引物跨物种扩增。本研究构建了世界首个十字花科SSR分子标记数据库平台(BSSRD, Brassicaceae Simple Sequence Repeats Database http://biodb.sdau.edu.cn/BSSRD),该平台将会在以后十字花科植物的遗传图谱的构建,基因定位和遗传育种中发挥重要的作用。

Brassicaceae is an important family in the plant kingdom. The Simple Sequence Repeats (SSRs) play a vital role in the study of Brassicaceae. By using 13 known sequenced Brassicaceae species with bioinformatics and comparative genomics methods, a total of 1,786,619 SSR loci and 1,919,464 pair of primers have been developed. The results show that the SSRs are widely distributed in the Brassicaceae species’ genomes, 1 - 3 bases duplication have a high ratio among these genomes and gene sequences, AT/TA repeats units have a high numbers in all of the 2 base duplication. In addition, 435,414 specific SSR primers could be used to analyze the correlation between the species of Brassicaceae. 11 pairs of universal primers’ developed shows that there exist some consistent base fragments and could be amplified across different species. In this study, we constructed the world’s first SSR molecular marker database platform (BSSRD, Brassicaceae Simple Sequence Repeats Database http://biodb.sdau.edu.cn/BSSRD) which will play an important role in the construction of genetic map, gene mapping and genetic breeding of Brassicaceae.

文章引用:
杨帅, 李慧, 侯欣, 张丽. 大规模开发及特性分析十字花科SSR分子标记及其数据库的构建[J]. 植物学研究, 2017, 6(3): 86-95. https://doi.org/10.12677/BR.2017.63013

参考文献

[1] 中国科学院中国植物志委员会, 周太炎, 郭荣麟, 蓝永珍. 中国植物志: 十字花科[J]. 1987.
[2] 陈秋芳, 贾宏汝. 十字花科植物的研究价值及开发利用前景[J]. 安徽农业科学, 2007, 35(34): 11183-11185.
[3] 曹仪植. 拟南芥[M]. 北京: 高等教育出版社, 2004.
[4] 蔡光勤, 杨庆勇, 杨倩, 赵振兴, 陈浩, 吴健, 范楚川, 周永明. 拟南芥与芸薹属比较基因组学分析鉴定甘蓝型油菜千粒重QTL的候选基因[J]. 中国作物学会油料作物专业委员会第七次会员代表大会暨学术年会, 2013.
[5] 李丽, 何伟明, 马连平, 刘庞源, 徐海明, 徐家柄, 郑晓鹰. 用EST-SSR分子标记技术构建大白菜核心种质及其指纹图谱库[J]. 基因组学与应用生物学, 2009, 28(1): 76-88.
[6] Litt, M. and Luty, J.A. (1989) A Hypervariable Microsatellite Revealed by in Vitro Amplification of a Dinucleotide Repeat within the Cardiac Muscle Actin Gene. American Journal of Human Genetics, 44, 397-401.
[7] 程小毛, 黄晓霞. SSR标记开发及其在植物中的应用[J]. 中国农学通报, 2011, 27(5): 304-307.
[8] 罗冉, 吴委林, 张旸, 李玉花. SSR分子标记在作物遗传育种中的应用[J]. 基因组学与应用生物学, 2010, 29(1): 137-143.
[9] 唐荣华, 张君诚, 吴为人. SSR分子标记的开发技术研究进展[J]. 西南农业学报, 2002, 15(4): 106-109.
[10] 李小白, 张明龙, 崔海瑞. 油菜EST-SSR标记的建立[J]. Journal of Molecular Cell Biology, 2007, 40(2): 137-144.
[11] 忻雅, 崔海瑞, 卢美贞, 姚艳玲, 金基强, 林容杓, 崔水莲. 白菜EST-SSR信息分析与标记的建立[J]. 园艺学报, 2006, 33(3): 549-554.
[12] Haudry, A., Platts, A.E., Vello, E., Hoen, D.R., Leclercq, M., Williamson, R.J., Forczek, E., Jolylopez, Z., Steffen, J.G. and Hazzouri, K.M. (2013) An Atlas of over 90,000 Conserved Noncoding Sequences Provides Insight into Crucifer Regulatory Regions. Nature Genetics, 45, 891-898.
https://doi.org/10.1038/ng.2684
[13] Hu, T.T., Pattyn, P., Bakker, E.G., Cao, J., Cheng, J.F., Clark, R.M., Fahlgren, N., Fawcett, J.A., Grimwood, J. and Gundlach, H. (2011) The Arabidopsis lyrata Genome Sequence and the Basis of Rapid Genome Size Change. Nature Genetics, 43, 476.
https://doi.org/10.1038/ng.807
[14] Initiative, A.G. (2000) Analysis of the Genome Sequence of the Flowering Plant Arabidopsis thaliana. Nature, 408, 796.
https://doi.org/10.1038/35048692
[15] Chalhoub, B., Denoeud, F., Liu, S., Parkin, I.A.P., Tang, H., Wang, X., Chiquet, J., Belcram, H., Tong, C. and Samans, B. (2014) Early Allopolyploid Evolution in the Post-Neolithic Brassica napus Oilseed Genome. Science, 345, 950-953.
https://doi.org/10.1126/science.1253435
[16] Yang, X. (2014) The Brassica oleracea Genome Reveals the Asymmetrical Evolution of Polyploid Genomes. Nature Communications, 5, 3930.
[17] Wang, X., Wang, H., Wang, J., Sun, R., Wu, J., Liu, S., Bai, Y., Mun, J.H., Bancroft, I. and Cheng, F. (2011) The Genome of the Mesopolyploid Crop Species Brassica rapa. Nature Genetics, 43, 1035-1039.
https://doi.org/10.1038/ng.919
[18] Kagale, S., Koh, C., Nixon, J., Bollina, V., Clarke, W.E., Tuteja, R., Spillane, C., Robinson, S.J., Links, M.G. and Clarke, C. (2014) The Emerging Biofuel Crop Camelina sativa Retains a Highly Undifferentiated Hexaploid Genome Structure. Nature Communications, 5, 3706.
https://doi.org/10.1038/ncomms4706
[19] He, Q., Hao, G., Wang, X., Bi, H., Li, Y., Guo, X. and Ma, T. (2016) The Complete Chloroplast Genome of Schrenkiella parvula (Brassicaceae). Mitochondrial DNA, 27, 1-2.
https://doi.org/10.1080/24701394.2016.1197219
[20] Oh, D.H., Dassanayake, M., Haas, J.S., Kropornika, A., Wright, C., D’Urzo, M.P., Hong, H., Ali, S., Hernandez, A. and Lambert, G.M. (2010) Genome Structures and Halophyte-Specific Gene Expression of the Extremophile Thellungiella parvula in Comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. Plant Physiology, 154, 1040-1052.
https://doi.org/10.1104/pp.110.163923
[21] Wu, H.J. and Xie, Q. (2012) Insights into Salt Tolerance from the Genome of Thellungiella salsuginea. Proceedings of the National Academy of Sciences of the United States of America, 109, 12219-12224.
https://doi.org/10.1073/pnas.1209954109
[22] Feng, C., Liu, S., Jian, W., Lu, F., Sun, S., Bo, L., Li, P., Wei, H. and Wang, X. (2011) BRAD, the Genetics and Genomics Database for Brassica Plants. BMC Plant Biology, 11, 136.
https://doi.org/10.1186/1471-2229-11-136
[23] Martins, W., Sousa, D.D., Proite, K., Guimarães, P., Moretzsohn, M. and Bertioli D. (2006) New Softwares for Automated Microsatellite Marker Development. Nucleic Acids Research, 34, e31.
https://doi.org/10.1093/nar/gnj030
[24] Schuler, G.D. (1997) Sequence Mapping by Electronic PCR. Genome Research, 7, 541-550.
https://doi.org/10.1101/gr.7.5.541
[25] 刘何, 辛艳. 植物SSR分子标记技术的应用[J]. 天津农林科技, 2015(5): 34-37.
[26] 任毅. 黄瓜高密度SSR遗传图谱构建及其应用[J]. 中国农业科学院, 2009.