JAPC  >> Vol. 6 No. 2 (May 2017)

    稠油注空气低温催化氧化行为研究
    Study of Catalytic Behavior on Low Temperature Oxidation of Heavy Crude Oil by Air Injection

  • 全文下载: PDF(574KB) HTML   XML   PP.105-112   DOI: 10.12677/JAPC.2017.62013  
  • 下载量: 350  浏览量: 1,052   国家科技经费支持

作者:  

王宗旭,黄海赞,卢小波,路 遥:中国科学院理化技术研究所,北京;
杨 柳:中国石油新疆油田分公司勘探开发研究院,新疆 克拉玛依

关键词:
稠油LTO催化动力学Heavy Oil LTO Catalysis Kinetic

摘要:

本文针对新疆油田稠油油样,加入硫酸镍做催化剂进行低温催化氧化研究。利用热失重分析(TGA)低温氧化(LTO)氧化动力学,及高温高压氧化反应管模拟地下LTO过程,采用气相色谱分析不同时间产出气中O2、CO2、CO的体积含量变化,分析反应前后油样族组成(SARA)含量变化。结果表明,使用硫酸镍做催化剂可降低LTO反应活化能、明显提高O2的消耗量,通过CO与CO2含量变化分析催化机理,显示硫酸镍对LTO断键反应具有催化作用。

In this research, the LTO kinetics of heavy oil(from Xinjiang oil field) was studied by using ther-mogravimetric analysis (TGA), and LTO simulation tests were performed with/without catalyst (nickel sulfate).During simulation tests, the changes of volume fraction of O2, CO2 and CO were analyzed by gas chromatography. The SARA content of heavy oil before and after the reaction was analyzed. The results show that using nickel sulfate as catalyst can reduce the activation energy of LTO reaction, and significantly increase the consumption of O2. By analyzing the changes of CO and CO2 content, the results show that nickel sulfate has a catalytic effect on LTO breakage reaction.

文章引用:
王宗旭, 木合塔尔, 黄海赞, 董宏, 卢小波, 杨柳, 路遥. 稠油注空气低温催化氧化行为研究[J]. 物理化学进展, 2017, 6(2): 105-112. https://doi.org/10.12677/JAPC.2017.62013

参考文献

[1] 鲍鹏程, 韩晓强, 马月琴, 等. 重度原油注空气低温氧化过程研究[J]. 化学研究, 2013, 24(4): 349-354.
[2] 蒋海岩, 袁士宝, 李杨, 等. 稠油氧化阶段划分及活化能的确定[J]. 西南石油大学学报(自然科学版), 2016, 38(4): 136-142.
[3] Kok, M. and Karacan, C. (2000) Behavior and Effect of SARA Fractions of Oil during Combustion. SPE Reservoir Evaluation Engineering, 3, 380-385.
https://doi.org/10.2118/66021-PA
[4] Wang, J.X., Wang, T.F., Feng, C.M., et al. (2015) Catalytic Effect of Transition Metallic Additives on the Light Oil Low-Temperature Oxidation Reaction. Energy Fuels, 29, 3545-3555.
https://doi.org/10.1021/ef5023913
[5] Pu, W.F., Yuan, C.D., Jin, F.Y., et al. (2015) Low-Temperature Oxidation and Characterization of Heavy Oil via Thermal Analysis. Energy Fuels, 29, 1151-1159.
https://doi.org/10.1021/ef502135e
[6] Pu, W.F., Liu, P.G., Li, Y.B., et al. (2015) Thermal Characteristics and Combustion Kinetics Analysis of Heavy Crude Oil Catalyzed by Metallic Additives. Industrial Engineering Chemistry Research, 54, 11525-11533.
https://doi.org/10.1021/acs.iecr.5b02937
[7] Jia, H., Liu, P.G., Pu, W.F., et al. (2016) In Situ Catalytic Upgrading of Heavy Crude Oil through Low-Temperature Oxidation. Petroleum Science, 13, 476-488.
https://doi.org/10.1007/s12182-016-0113-6
[8] Yang, S.M., Wu, L.B., Lu, Y., et al. (2015) Effect of Catalyst on Low Temperature Oxidation of Crude Oil. Chemical Research, 26, 515-518.
[9] 胡荣祖, 高胜利, 赵凤起, 等. 热分析动力学(第二版)[M]. 北京: 科学出版社, 2008: 79-117.
[10] Ren, S.R., Greaves, M. and Rathbone, R.R. (1999) Oxidation Kinetics of North Sea Light Crude Oils at Reservoir Temperature. Chemical Engineering Research Design, 77, 385-394.
https://doi.org/10.1205/026387699526368
[11] 桂玢, 王艳芳, 张鑫, 等. 原油空气氧化前后多环芳烃组分的气相色谱质谱分析[J]. 化学研究, 2010, 21(3): 75- 79.
[12] 程月, 张悫, 袁鉴, 等. 低温氧化对原油组成的影响[J]. 化学研究, 2007, 18(1): 67-69.
[13] 秦佳, 周亚玲, 王清华, 等. 注空气轻质原油低温氧化油气组分变化研究[J]. 大庆石油地质与开发, 2008, 27(5): 111-113.
[14] Ramirez, G., Mamora, D., Nares, R., et al. (2007) Increase Heavy-Oil Production in Combustion Tube Experiments through the Use of Catalyst. Society of Petroleum Engineers, Article ID: 107946.
[15] Ramirez, G., Hernandez, P., Cabrera, R., et al. (2008) Increase Oil Recovery of Heavy Oil in Combustion Tube Using a New Catalyst Based on Nickel Ionic Solution. Society of Petroleum Engineers, Article ID: 117713.