MS  >> Vol. 7 No. 3 (May 2017)

    极板间距对DLC薄膜拉曼光谱的影响
    The Effect of Plate Spacing on the DLC Films’ Raman Spectroscopy

  • 全文下载: PDF(548KB) HTML   XML   PP.387-394   DOI: 10.12677/MS.2017.73052  
  • 下载量: 205  浏览量: 267   科研立项经费支持

作者:  

任 瑛:河南工业大学材料科学与工程学院,河南 郑州;
王明超:大连理工大学材料科学与工程学院,辽宁 大连

关键词:
射频等离子体类金刚石薄膜拉曼光谱极板间距Radio Frequency Plasma Diamond-Like Carbon Films Raman Spectroscopy Plate Spacing

摘要:

采用射频等离子增强化学气相沉积法(RF-PECVD),使用CH4和H2作为气源,通过改变极板间距,在Si(100)衬底上制备类金刚石(DLC)膜。采用拉曼光谱表征DLC薄膜的微观结构,结果表明,制备的薄膜中含有sp3、sp2杂化碳键,具有典型的类金刚石结构特征,且以六方或菱方结构存在。通过分峰及计算表明:G峰位置和ID/IG值不断上升的趋势说明薄膜和衬底之间的应力逐渐改变,薄膜中六角碳环结构的含量随着极板间距的上升而不断增加;随着极板间距在8~17 cm范围内的增大,sp3键的含量在0%~20%范围内先减少后增加。

Using radio frequency plasma enhanced chemical vapor deposition (RF-PECVD), CH4 and H2 as gas sources, diamond-like carbon (DLC) films were prepared on the substrate of Si(100) by varying the plate spacing using radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). Raman spectroscopy was used to characterize the microstructure of these films. The results show that the deposited films are typical DLC films with sp3 and sp2 bonds and the crystal structure of diamond in films were Hexagonal or rhombohedral. G peak position and ID/IG ratio were found to be increased, which indicated that the strain between film and substrate was changed and the ring structure content was increased with the increase of plate spacing. The content of sp3 bond was decreasing in the range of 0% - 20% with increasing the plate spacing between 8 - 17 cm.

文章引用:
任瑛, 王明超. 极板间距对DLC薄膜拉曼光谱的影响[J]. 材料科学, 2017, 7(3): 387-394. https://doi.org/10.12677/MS.2017.73052

参考文献

[1] Ohgoe, Y., Hirakuri, K.K., Saitoh, H., et al. (2012) Classification of DLC Films in Terms of Biological Response. Surface & Coatings Technology, 207, 350-354.
[2] Vengudusamy, B., Mufti, R.A., Lamb, G.D., et al. (2011) Friction Properties of DLC/DLC Contacts in Base Oil. Tribology International, 44, 922-932.
[3] Dai, W., Ke, P., Moon, M.W., et al. (2012) Investigation of the Microstructure, Mechanical Properties and Tribological Behaviors of Ti-Containing Diamond-Like Carbon Films Fabricated by a Hybrid Ion Beam Method. Thin Solid Films, 520, 6057-6063.
[4] Martinez-Martinez, D., Schenkel, M., Pei, Y.T., et al. (2011) Microstructure and Chemical Bonding of DLC Films Deposited on ACM Rubber by PACVD. Surface & Coatings Technology, 205, S75-S78.
[5] 杨莉, 付亚波, 陈强. 射频等离子体增强化学气相沉积类金刚石薄膜的结构及摩擦学性能研究[J]. 包装工程, 2008, 29(10): 90-92.
[6] 王鸿翔, 左敦稳, 卢文壮, 徐峰. 工艺条件对金刚石膜红外透射率影响的研究[J]. 材料科学与工艺, 2010, 18(3): 322-325.
[7] 王兵, 熊鹰, 黎明, 等. 不同反应气源对制备纳米金刚石膜的影响[J]. 材料科学与工艺, 2010, 18(1): 96-100.
[8] Choi, W.S., Heo, J., Chung, I., et al. (2005) The Effect of RF Power on Tribological Properties of the Diamond-Like Carbon Films. Thin Solid Films, 475, 287-290.
[9] Awang, R. and Rahman, S.A. (2007) Influence of Power and Film Thickness on the Properties of RF PECVD Hydrogenated Amorphous Carbon Films. International Journal of Cardiology, 66, 195-197.
[10] Qi, H.-C., Feng, K.C. and Yang, S.Z. (2009) Effect of RF Power on Properties of the Diamond-Like Carbon Film Prepared by RF-PECVD Method. Surface Technology, 38, 41-42.
[11] Yun, Y.K., Alwi, H.A., Awang, R., et al. (2011) Influence of Radio Frequency Power on Thermal Diffusivity of Plasma Enhanced Chemical Vapor Deposition-Grown Hydrogenated Amorphous Carbon Thin-Films. Journal of Applied Physics, 109, Article ID: 113503.
https://doi.org/10.1063/1.3592291
[12] 崔万国, 张玲. 射频功率对PECVD制备类金刚石薄膜光学性能的影响[J]. 光谱实验室, 2010, 27(3): 937-938.
[13] 陈林林, 张殷华, 黄伟. 射频功率对类金刚石薄膜性能的影响[J]. 强激光与粒子束, 2013, 25(6): 1375-1378.
[14] Jiang, A., Shao, H., Yang, D., et al. (2014) Effect of RF Power on Field Emission Characteristics of Fluorinated Diamond-Like-Carbon Films. Chinese Journal of Vacuum Science & Technology, 34, 538-542.
[15] 苏永要, 赵黎宁, 王锦标, 等. 气体压强对DLC薄膜微观结构及性能的影响[J]. 中国表面工程, 2013, 26(5): 31-36.
[16] Nelson, N., Rakowski, R.T., Franks, J., et al. (2014) The Effect of Substrate Geometry and Surface Orientation on the Film Structure of DLC De-posited Using PECVD. Surface & Coatings Technology, 254, 73-78.
[17] 于玥. 用PECVD制备类金刚石膜的研究[D]: [硕士学位论文]. 长春: 长春理工大学, 2010.
[18] 陈林林. 类金刚石薄膜制备工艺与特性研究[D]: [硕士学位论文]. 北京: 中国科学院大学, 2013.
[19] Habibi, A., Khoie, S.M.M., Mahboubi, F., et al. (2016) Raman Spec-troscopy of Thin DLC Film Deposited by Plasma Electrolysis Process. Surface & Coatings Technology, 309, 945-950.
[20] Varade, A., Krishna, A., Reddy, K.N., et al. (2014) Diamond-Like Carbon Coating Made by RF Plasma Enhanced Chemical Vapour Deposition for Protective Antireflective Coatings on Germanium. Procedia Materials Science, 5, 1015-1019.
[21] Varade, A., Reddy, K.N., Sasen, D., et al. (2014) Detailed Raman Study of DLC Coating on Si(100) Made by RF-PECVD. Procedia Engineering, 97, 1452-1456.
[22] 沈艾霖. 濺鍍製造的非晶質碳之532 nm可見光拉曼光譜數據分析方法探討與類鑽碳相關研究[D]: [博士学位论文]. 成功大學化學工程學系, 2011.
[23] Miki, Y., Nishimoto, A., Sone, T., et al. (2015) Residual Stress Measurement in DLC Films Deposited by PBIID Method Using Raman Microprobe Spectroscopy. Surface & Coatings Technology, 283, 274-280.
[24] 王一大.含氫非晶質碳薄膜的拉曼光譜特性研究[D]: [博士学位论文]. 国立中央大学, 2010.
[25] Śmietana, M., Koba, M., Mikulic, P., et al. (2015) Improved Diamond-Like Carbon Coating Deposition Uniformity on Cylindrical Sample by Its Suspension in RF PECVD Chamber. Physica Status Solidi (A), 212, 2496-2500.
[26] Chu, P.K. and Li, L. (2006) Characterization of Amorphous and Nanocrystalline Carbon Films. Materials Chemistry & Physics, 96, 253-277.
[27] Catena, A., Kunze, M.R., Agnello, S., et al. (2016) Amorphous Hydrogenated Carbon (a-C:H) Deposi-tions on Polyoxymethylene: Substrate Influence on the Characteristics of the Developing Coatings. Surface & Coatings Technology, 307, 658-665.
[28] Friedmann, T.A., Sullivan, J.P., Knapp, J.A., et al. (1997) Thick Stress-Free Amor-phous-Tetrahedral Carbon Films with Hardness near That of Diamond. Applied Physics Letters, 71, 3820-3822.
https://doi.org/10.1063/1.120515
[29] 赖起邦. 类金刚石薄膜的制备和光学性质研究[D]: [博士学位论文]. 厦门: 厦门大学, 2008.
[30] Kapil, R., Mehta, B.R., Vankar, V.D., et al. (1998) Growth of Diamond Thin Films in a Cyclic Growth-Etch Oxy-Acetylene Flame Process. Thin Solid Films, 322, 74-84.
[31] 谭平恒. 碳材料的拉曼光谱[M]. 北京: 化学工业出版社, 2007.
[32] Ferrari, A.C. and Robertson, J. (2000) Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Physical Review B: Condensed Matter, 61, 14095-14107.
https://doi.org/10.1103/PhysRevB.61.14095
[33] Ferrari, A.C., Rodil, S.E. and Robertson, J. (2003) Interpretation of Infrared and Raman Spectra of Amorphous Carbon Nitrides. Physical Review B, 67, 1553061-15530620.
https://doi.org/10.1103/PhysRevB.67.155306