IJE  >> Vol. 6 No. 2 (May 2017)

    中国近海水色遥感研究进展
    Progress in Ocean Color Remote Sensing of Chinese Marginal Seas

  • 全文下载: PDF(724KB) HTML   XML   PP.82-92   DOI: 10.12677/IJE.2017.62010  
  • 下载量: 270  浏览量: 703  

作者:  

高慧,赵辉:广东海洋大学,海洋与气象学院,广东 湛江;
沈春燕:广东海洋大学,水产学院,广东 湛江

关键词:
中国近海水色遥感算法叶绿素Chinese Marginal Seas Ocean Color Remote Sensing Algorithm Chlorophyll-A

摘要:

海洋水色遥感是海洋环境监测的重要手段,具有观测频率高、空间覆盖广以及受海况影响小的优点,近年来逐渐受到海洋科研工作者和海洋监测部门的重视。本文概述了水色传感器的发展历程,对水色反演算法进行了总结分类,并以中国近海为研究区域综述了中国近海遥感研究成果,展示近年来海洋水色研究的现状、取得的进展以及应用前景。

Ocean color remote sensing is an important means of monitoring the marine environment; it has the advantages of high observation frequency, wide spatial coverage and small influence by sea condition. In recent years, marine scientific researchers and marine monitoring branches have been paid more and more attention. This paper reviews the development process of ocean color sensor, summarizes and classifies the ocean color inversion algorithms, and further takes remote sensing of ocean color in Chinese coastal regions as an example, to show the present status, progress and application prospect of ocean color in recent years.

文章引用:
高慧, 赵辉, 沈春燕. 中国近海水色遥感研究进展[J]. 世界生态学, 2017, 6(2): 82-92. https://doi.org/10.12677/IJE.2017.62010

参考文献

[1] 李四海, 王宏, 许卫东. 海洋水色卫星遥感研究与进展[J]. 地球科学进展, 2000, 15(2): 190-196.
[2] 刘玉光. 卫星海洋学[M]. 北京: 高等教育出版社, 2009.
[3] 陈楚群, 施平, 毛庆文. 南海海域叶绿素浓度分布特征的卫星遥感分析[J]. 热带海洋学报, 2001, 20(2): 66-70.
[4] Lee, Z.P., Carder, K., Arnone, R., et al. (2007) Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments. Sensors, 7, 3428-3441.
https://doi.org/10.3390/s7123428
[5] 潘德炉, 林寿仁, 李淑菁, 等. 海洋水色遥感在海岸带综合管理中的应用[J]. 航天返回与遥感, 2001, 22(2): 34-9+25.
[6] 刘良明, 祝家东. 海洋水色遥感器发展趋势初探[J]. 遥感信息, 2011(2): 111-119.
[7] 刘良明. 卫星海洋遥感导论[M]. 武汉: 武汉大学出版社; 2005.
[8] Morel, A. and Prieur, L. (1977) Analysis of Variations in Ocean Color. Limnology & Oceanography, 22, 709-722.
https://doi.org/10.4319/lo.1977.22.4.0709
[9] Clark, D.K. (1981) Phytoplankton Pigment Algorithms for the Nimbus-7 CZCS. Oceanography from Space, 227-237.
https://doi.org/10.1007/978-1-4613-3315-9_28
[10] Gordon, H.R., Clark, D.K., Brown, J.W., et al. (1983) Phytoplankton Pigment Concentrations in the Middle Atlantic Bight: Comparison of Ship Determinations and CZCS Estimates. Applied Optics, 22, 20-36.
https://doi.org/10.1364/AO.22.000020
[11] Gordon, H.R., Clark, D.K., Mueller, J.L., et al. (1980) Phytoplankton Pigments from the Nimbus-7 Coastal Zone Color Scanner: Comparisons with Surface Measurements. Science, 210, 63-66.
https://doi.org/10.1126/science.210.4465.63
[12] Neville, R.A. and Gower, J.F.R. (1977) Passive Remote Sensing of Phytoplankton via Chlorophyll α Fluorescence. Journal of Geophysical Research, 82, 3487-3493.
https://doi.org/10.1029/JC082i024p03487
[13] 邢小罡, 赵冬至, 刘玉光, 等. 叶绿素a荧光遥感研究进展[J]. 遥感学报, 2007, 11(1): 137-144.
[14] Hu, C. (2009) A Novel Ocean Color Index to Detect Floating Algae in the Global Oceans. Remote Sensing of Environment, 113, 2118-2129.
https://doi.org/10.1016/j.rse.2009.05.012
[15] Hu, C., Zhongping, L., Ma, R., et al. (2010) Moderate Resolution Imaging Spectroradiometer (MODIS) Observations of Cyanobacteria Blooms in Taihu Lake, China. Prehospital & Disaster Medicine, 29, 303-306.
https://doi.org/10.1029/2009jc005511
[16] Garcia, R.A., Peter, F., Keesing, J.K., et al. (2013) Quantification of Floating Macroalgae Blooms Using the Scaled Algae Index. Journal of Geophysical Research Oceans, 118, 26-42.
https://doi.org/10.1029/2012JC008292
[17] Hu, C., Zhongping, L. and Bryan, F. (2012) Chlorophyll a Algorithms for Oligotrophic Oceans: A Novel Approach Based on Three-Band Reflectance Difference. Journal of Geophysical Research Atmospheres, 117, 92-99.
https://doi.org/10.1029/2011JC007395
[18] Gordon, H.R., Brown, O.B., Evans, R.H., et al. (1988) A Semianalytic Radiance Model of Ocean Color. Journal of Geophysical Research Atmospheres, 93, 10909-10924.
https://doi.org/10.1029/JD093iD09p10909
[19] Carder, K.L., Chen, F.R., Lee, Z.P., et al. (1999) Semianalytic Mod-erate-Resolution Imaging Spectrometer Algorithms for Chlorophyll A and Absorption with Bio-Optical Domains Based on Ni-trate-Depletion Temperatures. Journal of Geophysical Research Atmospheres, 104, 5403-5421.
https://doi.org/10.1029/1998JC900082
[20] Roesler, C.S. and Perry, M.J. (1995) In Situ Phytoplankton Absorption, Fluorescence Emission, and Particulate Backscattering Spectra Determined from Reflectance. Journal of Geophysical Research Atmospheres, 100, 13279-13294.
https://doi.org/10.1029/95JC00455
[21] Lee, Z.P., Carder, K.L., Peacock, T.G., et al. (1996) Method to Derive Ocean Absorption Coefficients from Remote- Sensing Reflectance. Applied Optics, 35, 453-462.
https://doi.org/10.1364/AO.35.000453
[22] Lee, Z., Carder, K.L., Mobley, C.D., et al. (1999) Hyperspectral Remote Sensing for Shallow Waters. 2. Deriving Bottom Depths and Water Properties by Optimization. Applied Optics, 38, 3831-3843.
https://doi.org/10.1364/AO.38.003831
[23] Garver, S.A. and Siegel, D.A. (1997) Inherent Optical Property Inversion of Ocean Color Spectra and Its Biogeochemical Interpretation: 1. Time Series from the Sargasso Sea. Journal of Geophysical Research Atmospheres, 102, 18607- 18625.
https://doi.org/10.1029/96JC03243
[24] Krawczyk, H., Neumann, A., Walzel, T., et al. (1993) Investigation of Interpretation Possibilities of Spectral High- Dimensional Measurements by Means of Principal Component Analysis: A Concept for Physical Interpretation of Those Measurements. Proceedings of SPIE—The International Society for Optical Engineering, 1938, 28-35.
https://doi.org/10.1117/12.161565
[25] Doerffer, R. (1998) Determination of Case 2 Water Constituents Using Radiative Transfer Simulation and Its Inversion by Neural Networks. Proceedings of Ocean Optics, XI(V), 1-13.
[26] Lee, Z.P., Zhang, M.R., Carder, K.L., et al. (1998) A Neural Network Approach to Deriving Optical Properties and Depths of Shallow Waters.
[27] Buckton, D., O'Mongain, E. and Danaher, S. (2010) The Use of Neural Networks for the Estimation of Oceanic Constituents Based on the MERIS Instrument. International Journal of Remote Sensing, 20, 1841-1851.
https://doi.org/10.1080/014311699212515
[28] 陈淼. 海洋水色卫星遥感算法综述[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2005.
[29] 孙湘平. 中国近海区域海洋[M]. 北京: 海洋出版社, 2006.
[30] Ning, X.R., Shi, J.X. and Cai, Y.M. (2004) Biological Productivity front in the Changjiang Estuary and the Hangzhou Bay and Its Ecological Effects. Acta Oceanologica Sinica, 26, 96-106.
[31] Ning, X., Liu, Z., Cai, Y., et al. (1998) Physicobiological Oceanographic Remote Sensing of the East China Sea: Satellite and In Situ Observations. Journal of Geophysical Research Atmospheres, 103, 21623-21635.
https://doi.org/10.1029/98JC01612
[32] Tang, D.L., Ni, I.-H., Muller-Karger, F.E., et al. (1998) Analysis of Annual and Spatial Patterns of CZCS-Derived Pigment Concentration on the Continental Shelf of China. Continental Shelf Research, 18, 1493-515.
https://doi.org/10.1016/S0278-4343(98)00039-9
[33] Tang, D.L., Ni, I.-H., Muller-Karger, F.E., et al. (2003) Monthly Variation of Pigment Concentrations and Seasonal Winds in China’s Marginal Seas. Hydrobiologia, 511, 1-15.
https://doi.org/10.1023/B:HYDR.0000014001.43554.6f
[34] Tang, D.L., Kawamura, H., Oh, I.S., et al. (2006) Satellite Evidence of Harmful Algal Blooms and Related Oceanographic Features in the Bohai Sea during Autumn 1998. Advances in Space Research, 37, 681-689.
https://doi.org/10.1016/j.asr.2005.04.045
[35] 钱莉, 刘文岭, 李伟, 等. 渤海海域表层叶绿素A浓度的分布特征[J]. 盐业与化工, 2010, 39(5): 20-24.
[36] Yamaguchi, H., Kim, H.C., Son, Y.B., et al. (2012) Seasonal and Summer Interannual Variations of SeaWiFS Chlorophyll a in the Yellow Sea and East China Sea. Progress in Oceanography, 105, 22-29.
https://doi.org/10.1016/j.pocean.2012.04.004
[37] 李国胜, 王芳, 梁强, 等. 东海初级生产力遥感反演及其时空演化机制[J]. 地理学报, 2003, 58(4): 483-93.
[38] 赵辉, 齐义泉, 王东晓, 等. 南海叶绿素浓度季节变化及空间分布特征研究[J]. 海洋学报(中文版), 2005, 27(4): 45-52.
[39] Zhao, H. and Tang, D.L. (2007) Effect of 1998 El Niño on the Distribution of Phytoplankton in the South China Sea. Journal of Geophysical Research Oceans, 112, 117-128.
[40] 刘昕, 王静, 程旭华, 等. 南海叶绿素浓度的时空变化特征分析[J]. 热带海洋学报, 2012, 31(4): 42-48.
[41] 郝锵, 宁修仁, 刘诚刚, 等. 南海北部初级生产力遥感反演及其环境调控机制[J]. 海洋学报(中文版), 2007, 29(3): 58-68.
[42] 赵辉, 唐丹玲, 王素芬. 南海西北部夏季叶绿素a浓度的分布特征及其对海洋环境的响应[J]. 热带海洋学报. 2005, 24(6): 31-7+90.
[43] 商少凌, 洪华生, 张彩云, 等. 1998年冬季台湾海峡遥测叶绿素分布特征[J]. 海洋通报, 2001, 20(2): 25-29.
[44] Cui, T., Zhang, J., Groom, S., et al. (2010) Validation of MERIS Ocean-Color Products in the Bohai Sea: A Case Study for Turbid Coastal Waters. Remote Sensing of Environment, 114, 2326-2336.
https://doi.org/10.1016/j.rse.2010.05.009
[45] 钱莉, 刘文岭, 郑小慎. 基于MODIS数据反演的渤海叶绿素浓度时空变化[J]. 海洋通报, 2011, 30(6): 683-687.
[46] 许士国, 富砚昭, 康萍萍. 渤海表层叶绿素a时空分布及演变特征[J]. 海洋环境科学, 2015, 34(6): 898-903.
[47] Fu, Y., Xu, S. and Liu, J. (2016) Temporal-Spatial Variations and Developing Trends of Chlorophyll-a in the Bohai Sea, China. Estuarine Coastal & Shelf Science, 173, 49-56.
https://doi.org/10.1016/j.ecss.2016.02.016
[48] 杨曦光. 黄海叶绿素及初级生产力的遥感估算[D]: [博士学位论文]. 青岛: 中国科学院研究生院(海洋研究所); 2013.
[49] 马翱慧, 刘湘南, 李婷, 等. 南海北部海域叶绿素a浓度时空特征遥感分析[J]. 海洋学报(中文版), 2013, 35(4): 98-105.
[50] 檀赛春, 石广玉. 中国近海初级生产力的遥感研究及其时空演化[J]. 地理学报, 2006, 61(11): 1189-1199.
[51] 李新星, 张亭禄, 田林, 等. 多卫星传感器南海叶绿素a浓度遥感数据融合[J]. 遥感学报, 2015, 19(4): 680-689.
[52] 施英妮, 张亭禄, 石立坚, 等. 基于客观分析的多源卫星叶绿素a浓度产品融合方法研究[J]. 海洋学报, 2016, 38(3): 82-87.
[53] Qin, P., Shen, Y., Mu, B., et al. (2013) Comparison of MERIS and GOCI Ocean Color Product in the Yellow Sea of China. ESA Special Publication.
[54] Cui, T., Zhang, J., Tang, J., et al. (2014) Assessment of Satellite Ocean Color Products of MERIS, MODIS and SeaWiFS along the East China Coast (in the Yellow Sea and East China Sea). ISPRS Journal of Photogrammetry & Remote Sensing, 87, 137-151.
https://doi.org/10.1016/j.isprsjprs.2013.10.013