SEA  >> Vol. 6 No. 3 (June 2017)

    基于改进的新陈代谢GM (1,1)模型的软件阶段成本预测
    The Prediction of Software-Stage Effort Based on Improved Metabolic GM (1,1) Model

  • 全文下载: PDF(535KB) HTML   XML   PP.49-57   DOI: 10.12677/SEA.2017.63006  
  • 下载量: 261  浏览量: 549   国家自然科学基金支持

作者:  

王 勇,韩佩佩:中国海洋大学,山东 青岛

关键词:
软件成本阶段成本预测新陈代谢GM (11)模型Software Effort Stage Effort Prediction Metabolic GM (11) Model

摘要:

目前,关于软件成本预测的研究主要集中在对总成本的预测,对软件项目阶段成本的预测较少,然而软件行业对此有强烈的需求。为此,本文研究了使用灰色理论的GM (1,1)模型进行软件阶段成本的预测,并对GM (1,1)的新陈代谢模型进行了改进,动态选择模型初始条件,并提出了一种软件项目阶段成本的预测方法IGM。在三个不同数据集上的实验证明IGM方法优于传统新陈代谢GM (1,1)模型、GV方法和LR模型,显示出较大的潜力。

At present, the researches of software effort prediction mainly focus on the prediction of total effort, and the prediction of software project stage effort is less, but the software industry has a strong demand for it. So, this paper studies software-stage effort prediction by using the GM (1,1) model of grey theories, and improves the metabolic model of GM (1,1), selects the initialization dynamically, and proposes a prediction method IGM. Experiments on three different datasets demonstrate that IGM method is superior to traditional metabolic GM (1,1) model, GV method and LR model, and has greater potential.

文章引用:
王勇, 韩佩佩. 基于改进的新陈代谢GM (1,1)模型的软件阶段成本预测[J]. 软件工程与应用, 2017, 6(3): 49-57. https://doi.org/10.12677/SEA.2017.63006

参考文献

[1] Jrgensen, M. and Shepperd, M. (2007) A Systematic Review of Software Development Cost Estimation Studies. IEEE Transactions on Software Engineering, 33, 33-53.
https://doi.org/10.1109/TSE.2007.256943
[2] Shepperd, M. (2007) Software Project Economics: A Roadmap. Proceedings of the FoSE 2007: Future of Software Engineering, Minneapolis, 23-25 May 2007.
https://doi.org/10.1109/fose.2007.23
[3] Shepperd, M. and Schofield, C. (1997) Estimating Software Project Effort Using Analogies. IEEE Transactions on Software Engineering, 23, 736-743.
https://doi.org/10.1109/32.637387
[4] Tadayon, N. (2005) Neural Network Approach for Software Cost Estimation. Proceedings of the International Conference on Information Technology: Coding and Computing, Las Vegas, 4-6 April 2005.
https://doi.org/10.1109/itcc.2005.210
[5] Srinivasan, K. and Fisher, D. (1995) Machine Learning Approaches to Estimating Software Development Effort. IEEE Transactions on Software Engineering, 21, 126-137.
https://doi.org/10.1109/32.345828
[6] Briand, L.C., Emam, K.E. and Surmann, D. (1999) An Assessment and Comparison of Common Software Cost Estimation Modeling Techniques. Proceedings of the 1999 International Conference on Software Engineering, 22 May 1999.
[7] Molokken, K. and Jorgensen, M. (2003) A Review of Software Surveys on Software Effort Estimation. Proceedings of the 2003 International Symposium on Empirical Software Engineering, Rome, 30 September-1 October 2003.
https://doi.org/10.1109/isese.2003.1237981
[8] Hughes, R.T. (1996) Expert Judgement as an Estimating Method. Information & Software Technology, 38, 67-75.
https://doi.org/10.1016/0950-5849(95)01045-9
[9] 何晓阳, 王亚沙. 基于模型的软件成本估计方法[J]. 计算机研究与发展, 2006, 43(5): 777-783.
[10] Macdonell, S.G. and Shepperd, M.J. (2003) Using Prior-Phase Effort Records for Re-Estimation during Software Projects. Proceedings of the 9th International Software Metrics Symposium, Sydney, 3-5 September 2003.
https://doi.org/10.1109/metric.2003.1232457
[11] Wang, Y., Song, Q., Macdonell, S., et al. (2009) Integrate the GM (1,1) and Verhulst Models to Predict Software Stage Effort. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 39, 647-658.
https://doi.org/10.1109/TSMCC.2009.2020690
[12] 王勇, 宋擒豹, 沈钧毅. 根据序列变化率预测软件阶段成本[J]. 计算机学报, 2009, 32(7): 1346-1355.
[13] 刘思峰, 杨英杰, 吴利丰. 灰色系统理论及其应用[M]. 北京: 科学出版社, 2014.
[14] 陈霞, 邱桃荣, 魏玲玲. GM (1,1)模型和新陈代谢模型的应用比较[J]. 微计算机信息, 2008, 24(12): 163-165.
[15] 党耀国, 刘思峰, 刘斌. 以x~((1))(n)为初始条件的GM模型[J]. 中国管理科学, 2005, 13(1): 133-136.