MP  >> Vol. 7 No. 4 (July 2017)

    类星体SDSS J024304.68+000005.4光谱Mini-BAL光变分析
    Light Variation Analysis of Mini-BAL in the SDSS J024304.68+000005.4 Spectrum

  • 全文下载: PDF(1573KB) HTML   XML   PP.77-84   DOI: 10.12677/MP.2017.74009  
  • 下载量: 187  浏览量: 473   国家自然科学基金支持

作者:  

黄伟荣:广州大学物理与电子工程学院,广东 广州;
潘彩娟,黄红艳,陆美美:百色学院材料科学与工程学院,广西 百色

关键词:
类星体光谱内禀吸收线光变Quasar Spectrum Absorption Line Variation

摘要:

类星体J024304.68+000005.4在观测坐标系4542 Å~4598 Å出现一个mini-BAL,可以被5个高斯很好地拟合,其中包含一对内禀的CIVλλ1548,1551窄吸收线。CIV吸收体红移为1.942,与发射体的相对速度大小为6750 km/s。在3629个MJD内,mini-BAL等值宽度的变化趋势与其中的CIVλλ1548,1551窄线的等值宽度的变化趋势一致。对mini-BAL内5个窄高斯进行分析,发现等值宽度最小值越大的高斯成分,其光变幅度就越大。本文的研究结果可为mini-BAL起源和外流吸收线的变化原因的研究工作提供有益的数据参考。

We found a mini-BAL between 4542 Å - 4598 Å (in the observation frame) in the spectra of Quasar J024304.68+000005.4. This mini-BAL can be fitted very well using five Gaussian functions, which contains a pair of intrinsic CIVλλ1548,1551 narrow absorption doubles. The CIV absorbing material is at a red-shift of 1.942, and its relative velocity is 6750 km/s. In the timescale of 3629 MJD, the variation trends of the equivalent width of this mini-BAL are accordant with the CIVλλ1548,1551 narrow lines. For the five narrow Gaussian of the mini-BAL, we found that the smaller is the minimum of equivalent width of the Gaussian component, the greater is its variability amplitude. Our results provide useful data for the study of the origins of mini-BAL and of outflow absorption lines.

文章引用:
黄伟荣, 潘彩娟, 黄红艳, 陆美美. 类星体SDSS J024304.68+000005.4光谱Mini-BAL光变分析[J]. 现代物理, 2017, 7(4): 77-84. https://doi.org/10.12677/MP.2017.74009

参考文献

[1] Pâris, I., Petitjean, P., Ross, N.P., et al. (2016) The Sloan Digital Sky Survey Quasar Catalog: Twelfth Data Release. Astronomy & Astrophysics, 597, 79.
https://doi.org/10.1051/0004-6361/201527999
[2] 黄克谅. 类星体与活动星系核[M]. 北京: 中国科学技术出版社, 2005.
[3] Beckmann, V. and Shrader, C.R. (2012) Active Galactic Nuclei. Springer-Verlag, Berlin, 4749-4751.
https://doi.org/10.1002/9783527666829
[4] Proga, D. (2000) Winds from Accretion Disks Driven by Radiation and Magnetocentrifugal Force. The Astrophysical Journal, 538, 684-690.
https://doi.org/10.1086/309154
[5] Bergeron, J. (1985) The MG II Absorption System in the QSO PKS 2128-12—A Galaxy Disc/Halo with a Radius of 65 KPC. Astronomy & Astrophysics, 155, L8-L11.
[6] Ganguly, R., Bond, N.A., Charlton, J.C., et al. (2001) On the Origin of Intrinsic Narrow Absorption Lines in z Lesssim 1 QSOs. The Astrophysical Journal, 549, 133-154.
https://doi.org/10.1086/319082
[7] Pérezràfols, I., Miraldaescudé, J., Lundgren, B., et al. (2014) The Cross-Correlation of MG II Absorption and Galaxies in BOSS. Monthly Notices of the Royal Astronomical Society, 447, 2784-2802.
https://doi.org/10.1093/mnras/stu2645
[8] Hamann, F., Kaplan, K.F., Hidalgo, P.R., et al. (2008) Emergence of a Quasar Outflow. Monthly Notices of the Royal Astronomical Society Letters, 391, L39-L43.
https://doi.org/10.1111/j.1745-3933.2008.00554.x
[9] Ganguly, R. and Brotherton, M.S. (2007) On the Fraction of Quasars with Outflows. Astrophysical Journal, 672, 102-107.
https://doi.org/10.1086/524106
[10] Weymann, R.J., Morris, S.L., Foltz, C.B., et al. (1991) Comparisons of the Emission-Line and Continuum Properties of Broad Absorption Line and Normal Quasi-Stellar Objects. Astrophysical Journal, 373, 23-53.
https://doi.org/10.1086/170020
[11] Elvis, M. (2000) A Structure for Quasars. New Astronomy Reviews, 44, 559-562.
[12] Chen, Z.F., Gu, Q.S., Chen, Y.M., et al. (2015) Narrow Absorption Lines with Two Observations from the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 450, 3904-3919.
https://doi.org/10.1093/mnras/stv813
[13] Hidalgo, P.R., Hamann, F., Eracleous, M., et al. (2012) Variability of Mini-BAL and BAL Outflows in Quasars. ASP Conference Series, 460, 93.
[14] Reichard, T.A., Richards, G.T., Hall, P.B., et al. (2007) Continuum and Emission-Line Properties of Broad Absorption Line Quasars. Astronomical Journal, 126, 2594.
https://doi.org/10.1086/379293
[15] Misawa, T., Eracleous, M., Charlton, J.C., et al. (2005) Time-Variable Complex Metal Absorption Lines in the Quasar HS1603 + 3820. The Astrophysical Journal, 629, 115-130.
[16] Wise, J.H., Eracleous, M., Charlton, J.C., et al. (2004) Variability of Narrow, Associated Absorption Lines in Moderate- and Low-Redshift Quasars. Astrophysical Journal, 613, 129-150.
https://doi.org/10.1086/422974
[17] Johnson, S.D., Chen, H.W. and Mulchaey, J.S. (2015) On the Origin of Excess Cool Gas in Quasar Host Haloes. Monthly Notices of the Royal Astronomical Society, 452, 2553.
https://doi.org/10.1093/mnras/stv1481
[18] Tytler, D., Gleed, M., Melis, C., et al. (2009) Metal Absorption Systems in Spectra of Pairs of QSOs: How Absorbers Cluster around QSOs and Other Absorbers. Monthly Notices of the Royal Astronomical Society, 392, 1539-1572.
https://doi.org/10.1111/j.1365-2966.2008.14159.x
[19] Wild, V., Kauffmann, G., White, S., et al. (2008) Narrow Associated Quasi-Stellar Object Absorbers: Clustering, Outflows and the Line-of-Sight Proximity Effect. Monthly Notices of the Royal Astronomical Society, 388, 227-241.
https://doi.org/10.1111/j.1365-2966.2008.13375.x
[20] Netzer, H. (2015) Revisiting the Unified Model of Active Galactic Nuclei. Annual Review of Astronomy & Astrophysics, 53, 365-408.
https://doi.org/10.1146/annurev-astro-082214-122302