AMB  >> Vol. 6 No. 2 (June 2017)

    微生物胞外多糖及其生物合成途径研究现状
    Research Status of Microbial Exopolysaccharide and Its Metabolic Pathway

  • 全文下载: PDF(468KB) HTML   XML   PP.27-34   DOI: 10.12677/AMB.2017.62004  
  • 下载量: 1,072  浏览量: 2,588   国家自然科学基金支持

作者:  

庞 宁:东北大学,资源与土木工程学院,辽宁 沈阳;北京盈和瑞环境科技股份有限公司,北京;
张佳琪,姜彬慧:东北大学,资源与土木工程学院,辽宁 沈阳;
齐 进:抚顺出入境检验检疫局,辽宁 抚顺

关键词:
微生物胞外多糖产糖菌生物合成途径Microbial Flocculant Glycobacter Biosynthetic Pathway

摘要:

微生物胞外多糖因具有独特的物化性质、流变学特性和生物安全性等优势而在工业生产与生活等多个领域具有广泛的应用价值,但是由于生产成本高、产量少等限制其广泛的应用,本文简述了产生胞外多糖的微生物菌种筛选、分离及培养,产糖条件的优化,胞外多糖的提取及分离纯化与微生物胞外多糖的应用等方面的研究进展,重点介绍了微生物胞外多糖代谢途径的研究现状。通过微生物胞外多糖的代谢途径的研究可以获得提高胞外多糖产量的方法,为微生物胞外多糖的工业化应用奠定基础。

Due to their unique physical and chemical properties, rheological properties and biological safety, microbial polysaccharides have been widely used in many fields, such as industrial production and life. But due to high production costs and less production limit its wide application. The screening, isolating and culturing of microbial strains of extracellular polysaccharides were introduced in this paper, and the optimization of production of flocculant conditions and the separation and purification of extracellular polysaccharides were also discussed. Furthermore, the research status of the microbial exopolysaccharide metabolic pathway was focused. The method of improving the production of extracellular polysaccharides can be found by the study of metabolic pathways of microbial exopolysaccharides, which lays the foundation for the industrial application of microbial extracellular polysaccharide.

文章引用:
庞宁, 张佳琪, 齐进, 姜彬慧. 微生物胞外多糖及其生物合成途径研究现状[J]. 微生物前沿, 2017, 6(2): 27-34. https://doi.org/10.12677/AMB.2017.62004

参考文献

[1] 刘莎. 微生物多糖的制备和应用研究[D]: [硕士学位论文]. 大连: 大连工业大学, 2010.
[2] 杨正强. 一株微生物胞外多糖产生菌的研究及应用[D]: [硕士学位论文]. 成都: 四川师范大学, 2011.
[3] Karaki, N., Aljawish, A., Humeau, C., et al. (2016) Enzymatic Modification of Polysaccharides: Mechanisms, Properties, and Potential Applications: A Review. Enzyme and Microbial Technology, 90, 1-18.
[4] 李彬. 产胞外多糖菌株的筛选及胞外多糖性质和结构分析[D]: [硕士学位论文]. 南京: 南京理工大学, 2016.
[5] 王辑. 产胞外多糖植物乳杆菌的分离筛选, 分子表征及其应用研究[D]: [博士学位论文]. 长春: 吉林大学, 2015.
[6] 刘佳. 微生物絮凝剂的菌株筛选, 培养条件优化与应用研究[D]: [硕士学位论文]. 上海: 东华大学, 2006.
[7] 李丹妮. 微生物絮凝剂产生菌的筛选及其合成条件研究[D]: [硕士学位论文]. 大连: 大连海事大学, 2015.
[8] 吴美娟. 微生物絮凝剂产生菌合成条件及其应用的研究[D]: [硕士学位论文]. 大连: 大连海事大学, 2016.
[9] 高爽, 王特, 陈箐, 等. 一株中度嗜盐菌胞外多糖合成条件优化及其絮凝性质研究[J]. 中国食品添加剂, 2015, 5: 72-78.
[10] 吴丹. 高效生物絮凝剂产生菌的特性及发酵过程的优化[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2012.
[11] 唐家毅. 胶质芽孢杆菌多糖型絮凝剂的发酵优化、分离、理化特性及其应用研究[D]: [博士学位论文]. 广州: 华南理工大学, 2014.
[12] Subudhi, S., Bisht, V., Batta, N., et al. (2016) Purification and Characterization of Exopolysaccharide Bioflocculant Produced by Heavy Metal Resistant Achromobacter xylosoxidans. Carbohydrate Polymers, 137, 441-451.
https://doi.org/10.1016/j.carbpol.2015.10.066
[13] Liu, J., Ma, J., Liu, Y., et al. (2014) Optimized Production of a Novel Bioflocculant M-C11 by Klebsiella sp. and Its Application in Sludge Dewatering. Journal of Environmental Sciences, 26, 2076-2083.
https://doi.org/10.1016/j.jes.2014.08.007
[14] 刘倩. 氮源及金属离子对微生物絮凝剂合成的影响[D]: [硕士学位论文]. 沈阳: 东北大学, 2014.
[15] 孙晓萌. 季也蒙假丝酵母胞外多糖的分离纯化及活性研究[D]: [硕士学位论文]. 大连: 大连工业大学, 2016.
[16] 陈春阳. 松茸胞外多糖的分离纯化与特性研究[D]: [硕士学位论文]. 长春: 吉林农业大学, 2012.
[17] 王薇. 产絮菌合成生物絮凝剂特性及絮凝成分解析[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2009.
[18] Sasmal, D., Singh, R.P. and Tripathy, T. (2015) Synthesis and Flocculation Characteristics of a Novel Biodegradable Flocculating Agent Amylopec-tin-g-Poly (Acrylamide-co-N-Methylacrylamide). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 575-584.
https://doi.org/10.1016/j.colsurfa.2015.07.017
[19] Liu, W., Wang, H., Yu, J., et al. (2016) Structure, Chain Conformation, and Immunomodulatory Activity of the Polysaccharide Purified from Bacillus Calmette Guerin Formulation. Carbohydrate Polymers, 150, 149-158.
https://doi.org/10.1016/j.carbpol.2016.05.011
[20] 陈胜, 钱伟, 罗志敏, 等. 酸性多糖微生物絮凝剂的提取、纯化与分析[J]. 环境污染治理技术与设备, 2006, 12 (7): 61-64.
[21] 李明源, 王继莲, 魏云林, 等. 细菌胞外多糖的特性及应用研究[J]. 生物技术通报, 2014(6): 51-56.
[22] 唐省三, 朱晓琴. 复合真菌多糖的抗肿瘤及免疫增强作用初探[J]. 基础医学与临床, 2004, 5(24): 599-600.
[23] 陈真, 钱之玉, 郭青龙, 等. 海洋真菌多糖YCP对荷瘤小鼠肿瘤生长及免疫功能的影响[J]. 中草药, 2006, 37(2): 241-245.
[24] Zheng, S., Xing, W., Huo, X., et al. (2016) Composition and Anti-Inflammatory Effect of Polysaccharides from Sargassum horneri in RAW264.7 Macrophages. International Journal of Biological Macromolecules, 88, 403-413.
https://doi.org/10.1016/j.ijbiomac.2016.02.025
[25] 周晓铁, 韩昭, 孙世群, 等. 微生物絮凝剂的应用研究现状和发展趋势[J]. 安徽农业科学, 2015, 43(32): 107-108.
[26] 王博, 付宁, 马放. 微生物絮凝剂的制备与发展方向[J]. 环境科学与管理, 2012, 37(8): 83-108.
[27] Li, R., Zhang, H.B., Hu, X., et al. (2016) An Efficiently Sustainable Dextran-Based Flocculant: Synthesis, Characterization and Flocculation. Chemosphere, 159, 342-350.
https://doi.org/10.1016/j.chemosphere.2016.06.010
[28] Rong, H., Gao, B., Zhao, Y., et al. (2013) Advanced Lignin-Acrylamide Water Treatment Agent by Pulp and Paper Industrial Sludge: Synthesis, Properties and Application. Journal of Environmental Sciences, 25, 2367-2377.
https://doi.org/10.1016/S1001-0742(12)60326-X
[29] 曾化伟, 郑惠华, 陈惠, 等. 微生物多糖的生物合成及代谢工程研究进展[J]. 陕西理工学院学报, 2015, 32(4): 49-58.
[30] 陈蕾蕾, 王未名, 祝清俊, 等. 细菌多糖的生物合成机制[J]. 微生物学报, 2010, 50(12): 1583-1589.
[31] Uddin, R., Saeed, K., Khan, W., et al. (2015) Metabolic Pathway Analysis Approach: Identification of Novel Therapeutic Target against Methicillin Resistant Staphylococcus aureus. Gene, 556, 213-226.
https://doi.org/10.1016/j.gene.2014.11.056
[32] Dobler, L., Vilela, L.F., Almeida, R.V., et al. (2016) Rhamnolipids in Perspective: Gene Regulatory Pathways, Metabolic Engineering, Production and Technological Forecasting. New Biotechnology, 33, 123-135.
https://doi.org/10.1016/j.nbt.2015.09.005
[33] 王正荣, 生吉萍, 申琳. 细菌胞外多糖的生物合成与基因控制[J]. 生物技术通报, 2010(11): 48-55.
[34] 秦晓萌, 张远森, 柳陈坚, 等. 乳酸菌胞外多糖生理功能及合成途径的研究进展[J]. 食品工业科技, 2015, 36(14): 389-399.
[35] 李磊. 细菌多糖和糖蛋白生物合成途径及相关酶类研究[D]: [博士学位论文]. 济南: 山东大学, 2014.
[36] Freitas, F., Alves, V.D. and Reis, M.A. (2011) Advances in Bacterial Exopolysaccharides: From Production to Biotechnological Applications. Trends in Biotechnology, 29, 388-398.
https://doi.org/10.1016/j.tibtech.2011.03.008
[37] Nie, S.P., Zhang, H., Li, W.J. and Xie, M.Y. (2013) Current Development of Polysaccharides from Ganoderma: Isolation, Structure and Bioactivities. Bioactive Carbohydrates and Dietary Fibre, 1, 10-20.
https://doi.org/10.1016/j.bcdf.2013.01.001
[38] Plainvert, C., Bidet, P., Peigne, C., et al. (2007) A New O-Antigen Gene Cluster Has a Key Role in the Virulence of the Escherichia coli Meningitis Clone O45:K1:H7. Journal of Bacteriology, 189, 8528-8536.
https://doi.org/10.1128/JB.01013-07
[39] Iguchi, A., Iyoda, S., Kikuchi, T., et al. (2015) A Complete View of the Genetic Diversity of the Escherichia coli O-Antigen Biosynthesis Gene Cluster. DNA Research, 22, 101-107.
https://doi.org/10.1093/dnares/dsu043
[40] Suzuki, C., Kobayashi, M. and Kimoto-Nira, H. (2013) Novel Exopolysaccharides Produced by Lactococcus lactis subsp and the Diversity of epsE Genes in the Exopolysaccharide Biosynthesis Gene Clusters. Bioscience, Biotechnology, and Biochemistry, 77, 2013-2018.
https://doi.org/10.1271/bbb.130322
[41] 王庆峰. 胶质类芽孢杆菌胞外多糖调节及相关基因的转录分析[D]: [硕士学位论文]. 北京: 中国农业科学院, 2015.
[42] 李欧. Paenibacillus elsii B69胞外多糖结构鉴定及生物合成途径研究[D]: [博士学位论文]. 杭州: 浙江大学, 2014.
[43] Welman, A.D., Maddox, I.S. and Archer, R.H. (2006) Metabolism Associated with Raised Metabolic Flux to Sugar Nucleotide Precursors of Exopolysaccharides in Lactobacillus delbrueckii subsp. Journal of Industrial Microbiology and Biotechnology, 33, 391-400.
https://doi.org/10.1007/s10295-005-0075-y
[44] Woodward, R., Yi, W., Li, L., et al. (2010) In Vitro Bacterial Polysaccharide Biosynthesis: Defining the Functions of Wzy and Wzz. Nature Chemical Biology, 6, 418-423.
https://doi.org/10.1038/nchembio.351
[45] Ruffing, A. and Chen, R.R. (2006) Metabolic Engineering of Microbes for Oligosaccharide and Polysaccharide Synthesis. Microbial Cell Factories, 5, 25-26.
https://doi.org/10.1186/1475-2859-5-25
[46] Li, N., Wang, Y.L., Zhu, P., et al. (2015) Improvement of Exopolysaccharide Production in Lactobacillus casei LC2W by Overexpression of NADH Oxidase Gene. Microbiological Research, 171, 73-77.
https://doi.org/10.1016/j.micres.2014.12.006
[47] Jones, P.R. (2008) Improving Fermentative Biomass-Derived H2-Production by Engineering Microbial Metabolism. International Journal of Hydrogen Energy, 33, 5122-5130.
https://doi.org/10.1016/j.ijhydene.2008.05.004
[48] Krivoruchko, A., Zhang, Y., Siewers, V., et al. (2015) Microbial Acetyl-CoA Metabolism and Metabolic Engineering. Metabolic Engineering, 28, 28-42.
https://doi.org/10.1016/j.ymben.2014.11.009
[49] McDonald, A.G., Tipton, K.F. and Boyce, S. (2009) Tracing Metabolic Pathways from Enzyme Data. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1794, 1364-1371.
https://doi.org/10.1016/j.bbapap.2009.06.015
[50] PolakBerecka, M., Choma, A., Wako, A., et al. (2015) Physicochemical Characterization of Exopolysaccharides Produced by Lactobacillus rhamnosus on Various Carbon Sources. Carbohydrate Polymers, 117, 501-509.
https://doi.org/10.1016/j.carbpol.2014.10.006