涟江流域不同类型河岸带模拟径流过程及氮流失研究
Study on Simulation of Runoff and Nitrogen Loss in Different Types of Riparian Zone in Lian River Basin
DOI: 10.12677/AEP.2017.73035, PDF, HTML, XML, 下载: 1,458  浏览: 2,080 
作者: 任 维, 姚单君, 王震洪*:贵州大学生命科学学院,贵州 贵阳;刘立波:贵州大学生命科学学院,贵州 贵阳;凯里学院环境与生命科学学院,贵州 凯里
关键词: 河岸带分类土壤地表径流土壤水分入渗土壤氮流失Riparian Zone Soil Surface Runoff Soil Water Infiltration Soil Nitrogen Loss
摘要: 本研究以涟江流域作为研究对象,采用路线调查法对流域河岸带类型进行调查,根据土地利用方式、植被类型、地形地貌、土壤质地、人类活动强度、植被覆盖度等指标对涟江流域河岸带分类,选取不同类型河岸带运用径流槽模拟地表径流冲刷,测定土壤水分入渗和地表径流中氮流失量,以期能为流域面源污染防治以及良好河岸带结构的构建提供参考。研究表明:草地 + 壤土 + 山地、V型河谷 + 重度干扰类型河岸带地表径流产生量最大,单次冲刷最大地表径流量为757 mL;农业用地 + 水稻田撂荒地 +丘陵、U型沟谷 + 壤土 + 重度人类干扰类型与农业用地 + 坡耕地裸地 + 丘陵、U型沟谷 + 壤土 + 重度人类干扰类型产生量最低,6次冲刷均未产生地表径流。水分入渗量则相反,这三种类型单次冲刷入渗量分别为43 mL、800 mL、800 mL。不同类型河岸带模拟冲刷径流中总氮、铵态氮、硝态氮流失量均随冲刷次数增多而降低,其中硝态氮流失量大于铵态氮流失量。总氮、铵态氮、硝态氮流失量最大为建设用地 + 裸地 + 壤土 + 山地、V型河谷+重度干扰类型河岸带,流失量分别为4.60 mg/L、1.74 mg/L、2.11 mg/L;流失量最小为草地 + 壤土 + 山地、V型河谷 + 重度干扰类型河岸带,流失量分别为1.56 mg/L、0.45 mg/L、0.47 mg/L。本研究从局域尺度揭示了不同河岸带氮流失特征。
Abstract: A riparian zone is an ecotone between fresh-water ecosystems and terrestrial ecosystems. Understanding of the ecological processes occurring in the riparian zone will provide knowledge for a control of non-point source pollution in a watershed and restoration of riparian zones. Riparian zones along Lianjiang River in central Guizhou province of China were investigated through a route survey method to define the types of the riparian zones in Karst Rivers. According to the utilization of soil, vegetation types, topography, soil texture, the intensity of human activities and vegetation coverage, the types of the riparian zone along Lianjiang River were classified into eight types. Furthermore, Surface runoff, soil water infiltration and loss of nitrogen with the surface runoff were determined at the different sites representing these eight types of the riparian zones using a runoff trough under a condition of the simulation of the surface runoff. The results indicated that the surface runoff from the riparian type “Grass + loam + mountain and V-shaped valley + severe disturbance” is largest in a single or total event of the surface runoff. The surface runoff from both the riparian types “Agricultural land + rice paddies abandoned land + hills, U-shaped valleys + loam + intense human disturbance” and “Agricultural land + slope to bare land + hills, U-shaped valleys + loam + intense disturbance” is lowest, in which six times scouring soils could not generate the surface runoff. However, the water infiltration amount had an opposite result with three infiltration events, 43mL, 800mL and 800mL. The losses of total nitrogen, ammonium nitrogen, nitrate nitrogen from different river riparian zones increased along with a frequency of scouring, in which the losses of the nitrate nitrogen are higher than that of the ammonium nitrogen. The losses of the total nitrogen, ammonium nitrogen and nitrate nitrogen were largest in the riparian type “Construction land + bare land + loam + mountain and V-shaped valley + intense disturbance”, which were respectively 4.60mg/L, 1.74 mg/L and 2.11 mg/L. The losses of the total nitrogen, ammonium nitrogen and nitrate nitrogen were lowest in the riparian type “Grass + loam + mountain, V-shaped valley + intense disturbance”, which were respectively 1.56 mg/L, 0.45 mg/L and 0.47 mg/L. This study revealed the characteristics of nitrogen leaching loss from the different riparian zones.
文章引用:任维, 姚单君, 王震洪, 刘立波. 涟江流域不同类型河岸带模拟径流过程及氮流失研究[J]. 环境保护前沿, 2017, 7(3): 243-251. https://doi.org/10.12677/AEP.2017.73035

参考文献

[1] 田树新. 不同河岸带土壤水分物理性质分析[J]. 中国林副特产, 2007(2): 28-30.
[2] 王家生, 孔丽娜, 林木松, 等. 河岸带特征和功能研究综述[J]. 长江科学院院报, 2011, 28(11): 28-35.
[3] 张建春. 河岸带功能及其管理[J]. 水土保持学报, 2001, 16(6): 143-146.
[4] 王庆成, 于红丽, 姚琴, 等. 河岸带对陆地水体氮素输入的截流转化作用[J]. 应用生态学报, 2007, 18(11): 2611- 2617.
[5] 李天杰. 土壤地理学[M]. 第3版. 北京: 高等教育出版社, 2004.
[6] 刘凌云, 卢定彪, 谯文浪, 等. 涟江源区河流地貌特征及其与构造的响应[J]. 贵州地质, 2011, 28(1): 42-46, 22.
[7] 胡昌元. 涟江水质现状及其对农渔业生产的影响[J]. 环保科技, 1990(1): 28-31.
[8] 崔东海, 韩壮行, 姚琴, 等. 帽儿山林场不同河岸带植被类型土壤水分物理性质[J]. 东北林业大学学报, 2007, 35(10): 42-44.
[9] 王力, 邵明安, 王全九. 林地土壤水分运动研究述评[J]. 林业科学, 2005, 41(2): 147-153.
[10] 马晓刚. 缙云山不同植物群落类型土壤入渗性能研究[D]: [硕士学位论文]. 重庆: 西南大学, 2008.
[11] 赵西宁, 王万忠, 吴发启. 不同耕作管理措施对坡耕地降雨入渗的影响[J]. 西北农林科技大学学报(自然科学版), 2004, 32(2): 69-72.
[12] 党宏忠. 祁连山水源涵养林水文特征研究[D]: [博士学位论文]. 哈尔滨: 东北林业大学, 2004.
[13] 李军, 杨坤, 张泽光, 等. 冀北山地不同坡位油松林土壤水文效应[J]. 河北林果研究, 2016, 31(1): 8-12.
[14] Bodman, G.B. and Colman, E.A. (1994) Moisture and Energy Condition during Downward Entry of Water into Soil. Soil Science Society of America Journal, 8, 166-182.
[15] 李裕元, 邵明安. 降雨条件下坡地水分转化特征实验研究[J]. 水利学报, 2004, 35(4): 48-53.
[16] 吴发启, 赵西宁, 佘雕. 坡耕地土壤水分入渗影响因素分析[J]. 水土保持通报, 2003, 23(1): 16-18, 78.
[17] 刘贤赵, 康绍忠. 降雨入渗和产流问题研究的若干进展及评述[J]. 水土保持通报, 1999, 19(2): 57-62.
[18] 武世亮. 土壤入渗特性的空间变异性及与土壤物理特性的相关性研究[D]: [硕士学位论文]. 杨凌: 西北农林科技大学, 2014.
[19] 解文艳, 樊贵盛. 土壤质地对土壤入渗能力的影响[J]. 太原理工大学学报, 2004, 35(5): 537-540.
[20] 陈志良, 程炯, 刘平, 等. 暴雨径流对流域不同土地利用土壤氮磷流失的影响[J]. 水土保持学报, 2008, 22(5): 30-33.
[21] 焦平金, 许迪, 王少丽, 等. 自然降雨条件下农田地表产流及氮磷流失规律研究[J]. 农业环境科学学报, 2010, 29(3): 534-540.
[22] 刘强, 邓仕槐, 敬子卉, 等. 不同植物篱系统对坡耕地农田径流污染物的去除效果[J]. 农业环境科学学报, 2016, 35(6): 1136-1143.
[23] 孙铁军, 刘素军, 武菊英, 等. 6种禾草坡地水土保持效果的比较研究[J]. 水土保持学报. 2008, 22(3): 158-162.
[24] 米艳华, 潘艳华, 沙凌杰, 等. 云南红壤坡耕地的水土流失及其综合治理[J]. 水土保持学报, 2006, 20(2): 17-21.
[25] Hill, A.E. (1996) Nitrate Removal in Stream Riparian Zones. Journal of Environmental Quality, 25, 743-755.
https://doi.org/10.2134/jeq1996.00472425002500040014x
[26] 谭炳卿, 孔令金, 尚化庄. 河流保护与管理综述[J]. 水资源保护, 2002(3): 53-57.
[27] 李怀恩, 邓娜, 杨寅群, 等. 植被过滤带对地表径流中污染物的净化效果[J]. 农业工程学报, 2010, 26(7): 81-86.
[28] Abuzreig, M., Rudra, R.P., Whiteley, H.R., et al. (2003) Phosphorus Removal in Vegetated Filter Strips. Journal of Environmental Quality, 32, 613-619.
https://doi.org/10.2134/jeq2003.6130