MP  >> Vol. 7 No. 4 (July 2017)

    钠冷快堆选材变化及技术特点
    Material Changes and Technology Features of Sodium Cooled Fast Reactor

  • 全文下载: PDF(692KB) HTML   XML   PP.85-93   DOI: 10.12677/MP.2017.74010  
  • 下载量: 141  浏览量: 206   国家自然科学基金支持

作者:  

牛钰航,周秀安,胡东亮:华北水利水电大学,河南 郑州;
解 尧:华北水利水电大学,河南 郑州;中国科技大学核科学技术学院,安徽 合肥;
张宝玲:华北水利水电大学,河南 郑州;四川大学原子核科学技术研究所,四川 成都;
李 敏:四川大学原子核科学技术研究所,四川 成都

关键词:
钠冷快堆材料技术规划SFR Material Technology Plan

摘要:

钠冷快堆是作为世界研发进度最快的第四代反应堆,各核大国对钠冷快堆的发展十分重视,世界已经建成的快堆越来越多。首先介绍了钠冷快堆及其发展优势,然后着重分析了俄罗斯、日本、美国、印度和中国在钠冷快堆材料选择和技术特点方面的发展变化。以上各国钠冷快堆基本技术都逐渐由实验堆向商用堆转变。

Sodium cooled fast reactor (SFR) has attached worldwide attention. More and more SFR has been built in the world. In this paper, the advantages of SFR are introduced. Then the material change and the technical features of SFR of Russia, Japan, America, India and China are analyzed in detail. The technology of sodium cooled fast reactor is gradually changing from the experimental reactor to the commercial reactor.

文章引用:
牛钰航, 周秀安, 胡东亮, 解尧, 张宝玲, 李敏. 钠冷快堆选材变化及技术特点[J]. 现代物理, 2017, 7(4): 85-93. https://doi.org/10.12677/MP.2017.74010

参考文献

[1] Sorokin, A.P. (2007) Thermohydraulic Studies of Safety of NPPs with Fast Reactors. Thermal Engineering, 54, 962-970.
https://doi.org/10.1134/S004060150712004X
[2] Aoto, K., Dufour, P., Yang, H., et al. (2014) A Summary of Sodium-Cooled Fast Reactor Development. Progress in Nuclear Energy, 77, 247-265.
https://doi.org/10.1016/j.pnucene.2014.05.008
[3] 李宁. 快堆与核燃料循环的未来[J]. 中国核工业, 2013(10): 30-32.
[4] 徐銤. 我国快堆技术发展和核能可持续应用[J]. 现代物理知识, 2011(3): 37-43.
[5] 徐景明, 刘学刚, 朱永. 要重视核燃料循环战略的研究[J]. 能源研究通讯, 2004(3): 56-60.
[6] 何佳闰, 郭正荣. 钠冷快堆发展综述[J]. 东方电气评论, 2013, 27(3): 36-43.
[7] 徐銤. 钠冷快堆的安全性[J]. 自然杂志, 2013, 35(2): 79-84.
[8] Niwa, H., Fiorini, G.L., Sim, Y.S., et al. (2005) Status of the Design and Safety Project for the Sodium-Cooled Fast Reactor as A Generation IV Nuclear Energy System. Proc. of GLOBAL, 9-13.
[9] Ichimiya, M. (2011) The Status of Generation IV Sodium-Cooled Fast Reactor Technology Development and Its Future Project. Energy Procedia, 7, 79-87.
https://doi.org/10.1016/j.egypro.2011.06.011
[10] Nabeshima, K., Doda, N., Ohshima, H., et al. (2015) Analysis of Natural Circulation Tests in the Experimental Fast Reactor JOYO. International Topical Meeting on Nuclear Reactor Thermal Hydrau-lics.
[11] Arii, Y., Tomita, N., Maeda, A., et al. (1996) An Upgrading Program of the Reactor Core Performance of Fast Experimental Reactor JOYO (The MK-III Program). Journal of the Atomic Energy Society of Japan, 38, 577-584.
https://doi.org/10.3327/jaesj.38.577
[12] 伍浩松. 日法合作到2019年完成示范快堆基础设计[J]. 国外核新闻, 2016(11): 13-13.
[13] Kawashima, K., Maruyama, S., Ohki, S., et al. (2009) Fast Reactor Core Design Studies to Cope with TRU Fuel Composition Changes in the LWR-to-FBR Transition Period. ICAPP, 7, 116.
[14] Nakanishi, S., Hosoya, T., Kubo, S., et al. (2010) Development of Passive Shutdown System for SFR. Nuclear Technology, 170, 181-188.
[15] Takamatsu, M., Sekine, T., Aoyama, T., et al. (2007) Demonstration of Control Rod Holding Stability of the Self-Actuated Shutdown System in Joyo for Enhancement of Fast Reactor Inherent Safety. Journal of Nuclear Science and Technology, 44, 511-517.
https://doi.org/10.1080/18811248.2007.9711316
[16] Kostin, V.I. and Vasil’Ev, B.A. (2007) Problems of BN-800 Construction and the Possibilities of Developing Advanced Fast Reactors. Atomic Energy, 102, 19-24.
https://doi.org/10.1007/s10512-007-0002-6
[17] Murogov, V.M., Subbotin, V.I., Kagramanyan, V.S., et al. (1993) Stimulation of the Development of Sodium-Cooled Fast Reactors. Atomic Energy, 74, 268-271.
https://doi.org/10.1007/BF00739010
[18] Kochetkov, L.A., Kiryushin, A.I. and Oshkanov, N.N. (1993) Sodium-Cooled Fast Reactors in Russia: Looking beyond the Year 2000. Atomic Energy, 74, 265-267.
https://doi.org/10.1007/BF00739009
[19] 吴兴曼. BN800:定位于闭式燃料循环的先进钠冷快堆核电站[J]. 核科学与工程, 2011, 31(2): 127-134.
[20] Bychkov, A.V. (2006) Closed Fuel Cycle Strategies and National Programmes in Russia. Proc. 9th OECD/NEA Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, Nîmes, France, September 2006, 25-29.
[21] Oshkanov, N., Govorov, P. and Kuznetsov, A. (2008) 28 Years of Operation. Power-Generating Unit with BN-600 Fast Reactor. Atomic Energy, 8, 34-37.
[22] Poplavskii, V.M., Tsibulya, A.M., Kamaev, A.A., et al. (2004) Prospects for the BN-1800 Sodium-Cooled Fast Reactor Satisfying 21st Century Nuclear Power Requirements. Atomic Energy, 96, 308-314.
https://doi.org/10.1023/B:ATEN.0000038095.24870.58
[23] 张焰, 伍浩松. 通用电气–日立与南方公司合作开展快堆研究[J]. 国外核新闻, 2017(1): 21.
[24] Heidet, F. and Greenspan, E. (2013) Superprism-Sized Breed-Andburn Sodium-Cooled Core Performance. Nuclear Technology, 181, 251-273.
[25] 王新哲, 徐李, 贾晓淳, 等. 超高燃耗常规快堆堆芯物理概念设计[J]. 强激光与粒子束, 2017, 29(3): 102-106.
[26] Sekimoto, H., Ryu, K. and Yoshimura, Y. (2001) CANDLE: The New Burnup Strategy. Nuclear Science & Engineering, 139, 306-317.
https://doi.org/10.13182/NSE01-01
[27] Zheng, M., Tian, W., Chu, X., et al. (2014) Study of Traveling Wave Reactor (TWR) and CANDLE Strategy: A Review Work. Progress in Nuclear Energy, 71, 195-205.
https://doi.org/10.1016/j.pnucene.2013.12.010
[28] 孙伟, 魏彦琴, 吴文斌, 等. 行波堆燃耗的计算特点[J]. 强激光与粒子束, 2017, 29(3): 23-27.
[29] 余诗龙. 印度研究堆简介[J]. 国外核新闻, 1999(12): 30-33.
[30] Chetal, S.C. and Chellapandi, P. (2013) Indian Fast Reactor Technology: Current Status and Future Programme. Sādhanā, 38, 795-815.
https://doi.org/10.1007/s12046-013-0167-8
[31] 伍浩松. 印度原型快堆首次临界时间至少推迟至2017年3月[J]. 国外核新闻, 2016(8): 20-20.
[32] Raj, B., Mannan, S.L., Rao, P.R.V., et al. (2002) Development of Fuels and Structural Materials for Fast Breeder Reactors. Sādhanā, 27, 527-558.
https://doi.org/10.1007/bf02703293
[33] 伍浩松. 印度计划再建6座快堆[J]. 国外核新闻, 2016(1): 21-21.
[34] Chellapandi, P., Rao, P.R.V. and Kumar, P. (2015) Fast Reactor Programme in India. Pramana, 85, 525-538.
https://doi.org/10.1007/s12043-015-1069-6
[35] 曹攀, 喻宏, 胡赟, 等. 中国实验快堆燃料组件精细功率分布计算[J]. 强激光与粒子束, 2013, 25(5): 1275-1278.
[36] 彭燕, 张东辉, 丁振鑫. CEFR虹吸破坏装置两相流流动特性研究[J]. 中国原子能科学研究院年报, 2009(1): 6-7.
[37] 刘夫臣, 罗德康, 宋小松, 等. CEFR发电效率影响因素分析[J]. 核科学与工程, 2016(6): 734-738.