MP  >> Vol. 7 No. 4 (July 2017)

作者:  

胡昌伟:北京相对论研究联谊会,北京;上海市老科技工作者协会,上海

关键词:
可压缩性以太时空观定量效应虚粒子宇观以太场Compressibility Ether Space-Time Theory Quantitative Effects Virtual Particles Cosmoscopic Ether Field

摘要:

物理真空被称为以太,它是一种可压缩的超流体。绝对时空观与相对论性时空观是两种不同性质的时空观,前者是不受任何介质作用的纯粹的时空观;而后者是透过以太看世界的结果,是一种物质性的时空观,两者之间存在着对应关系。相对论性效应是宏观以太的可压缩性效应,由此可以描述相对论的物理机制,并指出它的局限性。量子效应是微观以太与微观实物之间相互作用的结果。对微观以太及其与粒子之间的关系提出了新的看法。暗物质现象被认为是以太宇观作用的表现,并对宇观以太场作用的数学描述做了初步尝试。

The physical vacuum is called Ether; it is a compressible superfluid. Absolute and relativistic space-time theories are two different space-time theories in nature. The former is a pure space- time theory that does not be influenced by any medium; and the latter, which is a material space- time theory, is the result observing world through ether. There are corresponding relations be-tween these two space-time theories. Relativistic effects are compressibility effects of macroscopic ether; their physical mechanism and the scope of application will be described. Quantum effects are the results of interaction between microscopic ether and objects (the matter with mass). The new ideas of relationship among microscopic ether and particles will be put forward. It is considered that the phenomenon of dark matter is a representation of cosmoscopic interaction of ether. There has a try at the mathematical description of cosmoscopic ether field’s interaction.

文章引用:
胡昌伟. 可压缩性以太论[J]. 现代物理, 2017, 7(4): 112-133. https://doi.org/10.12677/MP.2017.74013

参考文献

[1] 月弓. 区间场以太观[J]. 潜科学, 1989(4): 39-40.
[2] Hu, C.-W. (2014) Derivation of the Relativistic Equations from Classical Continuum Mechanics on the Basis of a Macroscopic Vacuum. Physics Essays, 27, 375-379.
https://doi.org/10.4006/0836-1398-27.3.375
[3] Hu, C.-W. (2012) Vacuum, Space-Time, Matter and the Models of Smarandache Geometry. Educational Publishers. viXra:1207.0072.
[4] Hu, C.-W. (2015) Physical Vacuum as a Distorting Mirror. Prespacetime Journal, 6, 450-456.
[5] Fung, Y.C. (2005) A First Course in Continuum Mechanics. Tsinghua University Press, Beijing, 257-259.
[6] 薛晓舟. 量子真空物理导行[M]. 北京: 科学出版社, 2005: 17.
[7] Casimir, H. and Polder, D. (1948) The Influence of Retardation on the London—Van der Waals Forces. Physical Review, 73, 360.
https://doi.org/10.1103/PhysRev.73.360
[8] Larrimore, L. (2002) Vacuum Fluctuations and the Casimir Force. Physics, 115, 1.
[9] 张操. 物理时空探讨[M]. 香港: 华夏文化出版有限公司, 2005: 5.
[10] 刘卫平, 苏本庆, 席德科, 杨新铁. 可压缩流动声干涉现象也具有迈克尔逊–莫雷效应[J]. 机械科学与技术, 2007, 26(9): 1144-1146.
[11] 维尔切克. 存在之轻[M]. 长沙: 湖南科学技术出版社, 2010.
[12] Newton, I. (1846) The Mathematical Principles of Natural Philosophy. Daniel Adee, New York.
[13] Hu, C.W. (2014) On the Quantitative Effects. International Journal of Modern Physics and Application, 1, 38-42.
[14] 廖铭声. 流体不变论[M]. 上海: 上海科技出版社, 1993.
[15] 杨新铁. 可压缩流体的协变不变原理和广义相对论线元[J]. 北京广播学院学报, 2004(s1): 87-88.
[16] 卢昌海. 质量起源——从对称性破缺到希格斯机制[J]. 现代物理知识, 2007(2): 8-10.
[17] Hafele, C. and Keating, R. (1972) Around-the-World Atomic Clocks: Predicted Relativistic Time Gains. Science, 177, 166-167.
https://doi.org/10.1126/science.177.4044.166
[18] Hafele, C. and Keating, R. (1972) Around-the-World Atomic Clocks: Observed Relativistic Time Gains. Science, 177, 168-170.
https://doi.org/10.1126/science.177.4044.168
[19] 爱因斯坦. 相对论的意义[M]. 北京: 科学出版社, 1966: 84-85.
[20] 黄志洵. 超光速研究的理论与实验[M]. 北京: 科学出版社, 2005.
[21] 张操, 廖康佳. 交流电速度可能超光速20倍——兼评郑翊等人的论文“电磁场的传播速度”[J]. 现代物理, 2015, 5(6): 125-132.
[22] 杨新铁, 等. 突破光障借鉴流体力学[M]. 百度文库, 2010.
[23] 冯珑珑, 向守平. 宇宙微波背景辐射的观察和理论[J]. 天文学进展, 1999(4): 357-365.
[24] Milgrom, M. MOND理论质疑暗物质[J]. 科学, 2002(10): 56-63.
[25] 王长荣. A-B效应及其物理诠释[J]. 现代物理知识, 2006(1): 12-13.
[26] Daryl, V. (2009) Sim Lite Astrometric Observato-ry.
[27] Anderson, J., et al. (2010) Astrometric Solar-System Anomalies. Ibid, 189-197.
[28] Standish, E.M. (2009) Testing Alternate Gravitational Theories. Ibid, 179-182.
[29] 斯蒂芬•霍金, 莱昂纳德•蒙洛迪诺. 真实世界的“真实”. 环球科学, 2010/11.
[30] B.K.里德雷. 时间、空间和万物[M]. 长沙: 湖南科学技术出版社, 2007: 157.