PM  >> Vol. 7 No. 4 (July 2017)

    一类复合方程的古典和非古典对称分类
    Classical and Nonclassical Symmetry Classification of a Composite Type Equation

  • 全文下载: PDF(529KB) HTML   XML   PP.301-309   DOI: 10.12677/PM.2017.74040  
  • 下载量: 136  浏览量: 181   国家自然科学基金支持

作者:  

白月星,苏道毕力格:内蒙古工业大学理学院,内蒙古 呼和浩特

关键词:
古典对称非古典对称对称分类微分特征列集算法复合方程Classical Symmetry Nonclassical Symmetry Symmetry Classification Differential Characteristic Set Algorithm The Composite Equation

摘要:

本文确定了一类复合方程的古典对称分类和非古典对称分类。首先,基于微分特征列集算法确定了复合方程的古典对称分类。其次,确定了复合方程的非古典对称的分类。第一步,添加不变曲面条件与原方程组成一个新的偏微分方程组(PDEs),利用符号计算软件Mathematica确定上面PDEs的对称对应的确定方程组(DTEs);第二步,根据所得的DTEs进行非古典对称分类,得到复合方程中参数F(u)的具体形式。第三步,确定了非古典对称所对应的不变解以及精确解。所得的不变解和精确解无法利用古典对称得到,所以丰富了复合方程的精确解。

In this paper, the classifications of classical and nonclassical symmetries to a composite type equation are determined. Firstly, the classification of classical symmetries to the composite equation is determined based on the differential characteristic set algorithm. Secondly, the classification of nonclassical symmetries for the composite equation is determined. First step, adding invariant surface condition and the original equation composed a new system of partial differential equations (PDEs), and the determining equations (DTEs) of symmetry to PDEs are determined by using the symbolic computation software Mathematica. Second step, the nonclassical symmetries are classified by calculating DTEs, so we can obtain the specific form of F(u) which is the parameter of the composite equation. Third step, the invariant solutions and exact solutions of the corresponding nonclassical symmetry are determined. The invariant solutions and exact solutions cannot be obtained by classical symmetry, so enrich the exact solutions of the composite equation.

文章引用:
白月星, 苏道毕力格. 一类复合方程的古典和非古典对称分类[J]. 理论数学, 2017, 7(4): 301-309. https://doi.org/10.12677/PM.2017.74040

参考文献

[1] Bluman, G.W. and Kumei, S. (1989) Symmetries and Differential Equations. Spring-Verlag, New York Berlin.
[2] Olver, P.J. (1993) Applications of Lie Groups to Differential Equations. 2nd Edition, Spring-Verlag, New York.
[3] Bluman, G.W. and Cole, J.D. (2010) The General Similarity Solutions of the Heat Equations. Journal of Engineering Mathematics, 66, 181-199.
[4] Bluman, G.W. and Cole, J.D. (1969) The General Similarity Solution of the Heat Equation. Journal of Applied Mathematics and Mechanics, 18, 1025-1042.
[5] Huang, Q., Qu, C.Z. and Zhdanov, R. (2011) Group-Theoretical Framework for Potential Symmetries of Evolution Equations. Journal of Mathematical Physics, 52, 023514.
https://doi.org/10.1063/1.3554692
[6] 吴琼, 李德生. 在广义条件对称下的一类非线性扩散方程的精确解[J]. 理论数学, 2013, 3(5): 289-294.
[7] 惠小健. 扩散方程的条件对称及其精确解[D]: [硕士学位论文]. 西安: 西北大学, 2007.
[8] 特木尔朝鲁, 额尔敦布和, 夏铁成, 等. 具源项的波动方程的非古典对称[J]. 数学年刊A辑(中文版), 2012, 33(2): 193-204.
[9] Yun, Y. and Temuer, C. (2015) Classical and Nonclassical Symmetry Classifications of Nonlinear Wave Equation with Dissipation. Applied Mathematics and Mechanics, 36, 365-378.
https://doi.org/10.1007/s10483-015-1910-6
[10] Wan, W.T., Chen, Y., Wan, W.T., et al. (2009) A Note on Non-Classical Symmetries of a Class of Nonlinear Partial Differential Equations and Compatibility. Communications in Theoretical Physics, 52, 398.
[11] Xin, X.P., Liu, Y.T. and Liu, X.Q. (2016) Nonlocal Symmetries, Exact Solutions and Conservation Laws of the Coupled Hirota Equations. Applied Mathematics Letters, 55, 63-71.
[12] Arrigo, D.J., Ekrut, D.A., Fliss, J.R., et al. (2010) Non-Classical Symmetries of a Class of Burgers’ Systems. Journal of Mathematical Analysis and Applications, 371, 813-820.
[13] Zhang, Z. and Chen, Y. (2010) Classical and Nonclassical Symmetries Analysis for Initial Value Problems. Physics Letters A, 374, 1117-1120.
[14] Estevez, P.G. and Gordoa, P.R. (1994) Nonclassical Symmetries and the Singular Manifold Method: The Burgers Equation. Theoretical and Mathematical Physics, 99, 562-566.
https://doi.org/10.1007/BF01016139
[15] 苏道毕力格, 特木尔朝鲁. 用吴方法计算BBM-Burgers方程的势对称及其不变解[J]. 内蒙古大学学报自然科学版, 2006, 37(4): 366-373.
[16] 鲍春玲, 苏道毕力格, 韩雁清. RLW-Burgers方程的势对称及其精确解[J]. 应用数学进展, 2016, 5(1): 112-120.
[17] 特木尔朝鲁, 白玉山. 基于吴方法的确定和分类(偏)微分方程古典和非古典对称新算法理论[J]. 中国科学: 数学, 2010, 4: 331-348.