MP  >> Vol. 7 No. 4 (July 2017)

    Geometric Phase in an Imaginary Photon Process

  • 全文下载: PDF(331KB) HTML   XML   PP.148-154   DOI: 10.12677/MP.2017.74016  
  • 下载量: 102  浏览量: 153   科研立项经费支持



几何相位推广的Jaynes-Cummings模型Geometric Phase Generalized Jaynes-Cummings Model


利用Lewis-Riesenfeld不变量理论,研究了推广的含时二能级虚光子过程的 Jaynes-Cummings模型。发现周期情况下的几何相位与光子场的频率、光子和原子之间的耦合系数以及原子跃迁频率无关。

By using the Lewis-Riesenfeld invariant theory, we have studied the geometric phase in a generalized time-dependent Jaynes-Cummings model with imaginary photon process for two-level atoms interacting with light field. It is found that the geometric phase in a cycle case has nothing to do with the frequency of the photon field, the coupling coefficient between photons and atoms, and the atom transition frequency.

乔元新, 于肇贤. 虚光子过程中的几何相位[J]. 现代物理, 2017, 7(4): 148-154.


[1] Pancharatnam, S. (1956) Generalized Theory of Interference, and Its Applications. Proceedings of the Indian Academy of Sciences—Section A, 44, 247-262.
[2] Berry, M.V. (1984) Quantal Phase Factors Accompanying Adiabatic Changes. Proceedings of the Royal Society London, Series A, 392, 45.
[3] Aharonov, Y. and Anandan, J. (1987) Phase Change during a Cyclic Quantum Evolution. Physical Review Letters, 58, 1593.
[4] Samuel, J. and Bhandari, R. (1988) General Setting for Berry’s Phase. Physical Review Letters, 60, 2339.
[5] Mukunda, N. and Simon, R. (1933) Quantum Kinematic Approach to the Geometric Phase. I. General Formalism. Annals of Physics (N.Y.), 228, 205-268.
[6] Pati, A.K. (1995) Geometric Aspects of Noncyclic Quantum Evolutions. Physical Review A, 52, 2576.
[7] Uhlmann, A. (1986) Parallel Transport and “Quantum Holonomy” along Density Operators. Reports on Mathematical Physics, 24, 229-240.
[8] Sjöqvist, E. (2000) Geometric Phases for Mixed States in Interferometry. Physical Review Letters, 85, 2845
[9] Tong, D.M., et al. (2004) Kinematic Approach to the Mixed State Geometric Phase in Nonunitary Evolution. Physical Review Letters, 93, 080405.
[10] Lewis, H.R. and Riesenfeld, W.B. (1969) An Exact Quantum Theory of the Time-Dependent Harmonic Oscillator and of a Charged Particle in a Time-Dependent Electromagnetic Field. Journal of Mathematical Physics, 10, 1458-1473.
[11] Gao, X.C., Xu, J.B. and Qian, T.Z. (1991) Geometric Phase and the Generalized Invariant Formulation. Physical Review A, 44, 7016.
[12] Gao, X.C., Fu, J. and Shen, J.Q. (2000) Quantum-Invariant Theory and the Evolution of a DIRAC FIELD in Friedmann-Robertson-Walker Flat Space-Times. European Journal of Physics, 13, 527-541.
[13] Gao, X.C., Gao, J., Qian, T.Z. and Xu, J.B. (1996) Quantum-Invariant Theory and the Evolution of a Quantum Scalar Field in Robertson-Walker Flat Spacetimes. Physical Review D, 53, 4374.
[14] Shen, J.Q. and Zhu, H.Y. (2003) arXiv: quant-ph/0305057v2
[15] Richardson, D.J., et al. (1988) Demonstration of Berry's Phase Using Stored Ultracold Neutrons. Physical Review Letters, 61, 2030.
[16] Wilczek, F. and Zee, A. (1984) Appearance of Gauge Structure in Simple Dynamical Systems. Physical Review Letters, 25, 2111.
[17] Moody, J., et al. (1986) Realizations of Magnetic-Monopole Gauge Fields: Diatoms and Spin Precession. Physical Review Letters, 56, 893.
[18] Sun, C.P. (1990) Generalizing Born-Oppenheimer Approximations and Observable Effects of an Induced Gauge Field. Physical Review D, 41, 1349.
[19] Sun, C.P. (1993) Quantum Dynamical Model for Wave-Function Reduction in Classical and Macroscopic Limits. Physical Review A, 48, 898.
[20] Sun, C.P. (1988) Flavor-Octet Dibaryons in the Quark Model. Physical Review D, 38, 298.
[21] Sun, C.P., et al. (1988) High-Order Quantum Adiabatic Approximation and Berry's Phase Factor. Journal of Physics A, 21, 1595.
[22] Sun, C.P., et al. (2001) Quantum Measurement via Born-Oppenheimer Adiabatic Dynamics. Physical Review A, 63, Article ID: 012111.
[23] Chen, G., Li, J.Q. and Liang, J.Q. (2006) Critical Property of the Geometric Phase in the Dicke Model. Physical Review A, 74, Article ID: 054101.
[24] Chen, Z.D., Liang, J.Q., Shen, S.Q. and Xie, W.F. (2004) Dynamics and Berry Phase of Two-Species Bose-Einstein Condensates. Physical Review A, 69, Article ID: 023611.
[25] He, P.B., Sun, Q., Li, P., Shen, S.Q. and Liu, W.M. (2007) Magnetic Quantum Phase Transition of Cold Atoms in an Optical Lattice. Physical Review A, 76, Article ID: 043618.
[26] Li, Z.D., Li, Q.Y., Li, L. and Liu, W.M. (2007) Soliton Solution for the Spin Current in a Ferromagnetic Nanowire. Physical Review A, 76, Article ID: 026605.
[27] Niu, Q., Wang, X.D., Kleinman, L., Liu, W.M., Nicholson, D.M.C. and Stocks, G.M. (1999) Adiabatic Dynamics of Local Spin Moments in Itinerant Magnets. Physical Review Letters, 83, 207.
[28] Jaynes, E.T. and Cummings, F.W. (1963) Comparison of Quantum and Semiclassical Radiation Theories with Application to the Beam Maser. Proceedings of the IEEE, 51, 89-109.
[29] Huang, H.B. and Fan, H.Y. (1991) Jaynes-Cummings Model for Double m-Photon Lasers. Physics Letters A, 159, 323-327.
[30] Fan, H.Y. and Li, L.S. (1996) Supersymmetric Unitary Operator for Some Generalized Jaynes-Cummings Models. Communications in Theoretical Physics, 25, 105.
[31] Wu, Y. and Yang, X. (1997) Jaynes-Cummings Model for a Trapped Ion in Any Position of a Standing Wave. Physical Review Letters, 78, 3086.
[32] Wu, Y. (1996) Simple Algebraic Method to Solve a Coupled-Channel Cavity QED Model. Physical Review A, 54, 4534.
[33] Wu, Y., Yang, Y.X., Wu, Y. and Li, Y.J. (1997) Unified and Standardized Procedure to Solve Various Nonlinear Jaynes-Cummings Models. Physical Review A, 55, 4545.
[34] Wei, J. and Norman, E. (1963) Lie Algebraic Solution of Linear Differential Equations. Journal of Mathematical Physics, 4, 575.
[35] Simon, B. (1983) Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase. Physical Review Letters, 51, 2167.