JAPC  >> Vol. 6 No. 3 (August 2017)

    二氧化碳吸附材料研究新进展
    Recent Research Progresses on the CO2 Adsorption Materials

  • 全文下载: PDF(387KB) HTML   XML   PP.121-127   DOI: 10.12677/JAPC.2017.63015  
  • 下载量: 526  浏览量: 1,185   国家自然科学基金支持

作者:  

金 灿,郑璐康:浙江师范大学含氟新材料研究所,浙江 金华

关键词:
二氧化碳捕集吸附多孔材料Carbon Dioxide Capture Adsorption Porous Materials

摘要:

CO2是导致温室效应的主要气体,减少其排放是遏制全球气候变暖的关键,CO2的捕集与封存对于缓解温室效应具有重要意义;而捕集与封存的关键是寻求高吸附量、高选择性、热稳定性好且循环性能良好的吸附剂。近些年来一些多孔材料如活性炭、沸石分子筛、金属有机骨架材料被广泛应用于CO2吸附。本文介绍了CO2捕集方法及各种多孔材料的CO2吸附性能,重点介绍了密胺基微孔有机聚合物(MBMPs)。MBMPs由于其具有较高的比表面积、合成方法多样、容易功能化修饰等优点,在气体的存储与分离方面具有广阔应用前景。

CO2 as the main greenhouse gas, the reduction of its emission is the key to curb global warming. CO2 capture and sequestration (CCS) is of significance for the mitigation of greenhouse effect. The key of CCS is seeking for the adsorbents with high adsorption capacity, high selectivity, good thermal stability, and good recyclability. In recent years, some porous materials such as activated carbon, zeolite molecular sieves, and metal organic polymer materials have been widely applied to CO2 adsorption. This paper firstly gives an overview introduction of the methods of CO2 capture as well as some porous materials as CO2 adsorbents. Afterwards, melamine based microporous polymers (MBMPs) are highlighted. Due to the advantages of the high specific surface area, the diversity of the synthetic methods, the easy functionalization, etc., MBMPs show a broad prospect of the application in gas storage and separation.

文章引用:
金灿, 郑璐康, 陈琦, 肖强. 二氧化碳吸附材料研究新进展[J]. 物理化学进展, 2017, 6(3): 121-127. https://doi.org/10.12677/JAPC.2017.63015

参考文献

[1] 联合国. “联合国气候变化框架公约”京都议定书[M]. 京都: 联合国, 1998.
[2] Song, C. (2006) Global Challenges and Strate-gies for Control, Conversion and Utilization of CO2, for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Processing. Catalysis Today, 115, 2-32.
[3] Ishida, N., Shimamoto, Y. and Murakami, M. (2012) Solar-Driven Incorporation of Carbon Dioxide into α-Amino Ketones. Angewandte Chemie International Edition, 51, 11750-11752.
https://doi.org/10.1002/anie.201206166
[4] Yang, H.Q., Xu, Z.H., Fan, M.H., Gupta, R., Slimane, R.B., Bland, A.E. and Wright, I. (2008) Progress in Carbon Dioxide Separation and Capture: A Review. Journal of Environmental Sciences, 20, 14.
[5] Rochelle, G.T. (2009) Amine Scrubbing for CO2 Capture. Science, 325, 1652-1654.
https://doi.org/10.1126/science.1176731
[6] Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H. and Srivastava, R.D. (2008) Advances in CO2, Capture Technology—The U.S. Department of Energy’s Carbon Sequestration Program. International Journal of Greenhouse Gas Control, 2, 9-20.
[7] Favre, E., et al. (2007) Carbon Dioxide Recovery from Post-Combustion Processes: Can Gas Permeation Membranes Compete with Absorption. Journal of Membrane Science, 294, 50-59.
[8] Xu, G., Li, L., Yang, Y., et al. (2012) A Novel CO2 Cryogenic Liquefaction and Separation System. Eng, 42, 522-529.
[9] Yakovlev, V.Y., Fomkin, A.A., Tvardovskii, A.V., et al. (2005) Carbon Dioxide Adsorption on the Microporousacc Carbon Adsorbent. Russian Chemical Bulletin, 54, 1373-1377.
https://doi.org/10.1007/s11172-005-0412-3
[10] Milewskaduda, J., Duda, J., Nodzenski, A., Lakatos, J., et al. (2000) Absorption and Adsorption of Methane and Carbon Dioxide in Hard Coal and Active Carbon. Langmuir, 16, 5458-5466.
https://doi.org/10.1021/la991515a
[11] Cagnon, B.T., Guillot, A., et al. (1975) The Effect of the Carbonization/Activation Procedure on the Microporous Texture of the Subsequent Chars and Active Carbons. Clinical Radiology, 14, 261-266.
[12] Yakovlev, V.Y., Fomkin, A.A., Tvardovskii, A.V., et al. (2003) Adsorption and Deformation Phenomena at Interaction of N2 and Microporous Carbon Adsorbent. Journal of Colloid and Interface Science, 268, 33-36.
[13] Babarao, R. and Jiang, J. (2009) Unprecedentedly High Selective Adsorption of Gas Mixtures in Rho Zeolite-Like Metal-Organic Framework: A Molecular Simulation Study. Journal of the American Chemical Society, 131, 11417- 11425.
https://doi.org/10.1021/ja901061j
[14] Siriwardane, R.V., Shen, M.-S. and Fisher, E.P. (2003) Adsorption of CO2, N2, and O2 on Natural Zeolites. Energy & Fuels, 17, 571-576.
https://doi.org/10.1021/ef020135l
[15] Chatti, R., Bansiwal, A.K., Thote, J.A., et al. (2009) Amine Loaded Zeolites for Carbon Dioxide Capture: Amine Loading and Adsorption Studies. Microporous and Mesoporous Materials, 121, 84-89.
[16] Xu, X., Zhao, X., Sun, L., et al. (2009) Adsorption Separation of Carbon Dioxide, Methane and Nitrogen on Monoethanol Amine Modified β-Zeolite. Journal of Natural Gas Chemistry, 18, 167-172.
[17] Xu, X., Zhao, X., Sun, L., et al. (2008) Adsorption Separation of Carbon Dioxide, Methane, and Nitrogen on Hβ and Na-Exchanged β-Zeolite. Journal of Natural Gas Chemistry, 17, 391-396.
[18] Lee, K.B., Beaver, M.G., Caram, H.S., et al. (2008) Performance of Na2O Promoted Alumina as CO2 Chemisorbent in Sorption-Enhanced Reaction Process for Simultaneous Production of Fuel-Cell Grade H2 and Compressed CO2 from Synthesis Gas. Journal of Power Sources, 176, 312-319.
[19] Caskey, S.R., Wong-Foy, A.G. and Matzger, A.J. (2008) Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. Journal of the American Chemical Society, 130, 10870- 10871.
https://doi.org/10.1021/ja8036096
[20] Martín-Martinez, J.M., Torregrosa-Maci, R. and Mittelmeijer-Hazeleger, M.C. (1995) Mechanisms of Adsorption of CO2 in the Micropores of Activated Anthracite. Fuel, 74, 111-114.
[21] Guo, Y., Zhao, C., Li, C., et al. (2014) Application of PEI-K 2CO3/AC for Cap-Turing CO2 from Flue Gas after Combustion. Applied Energy, 129, 17-24.
[22] Su, F., Lu, C., Kuo, S.C., et al. (2010) Adsorption of CO2 on Amine-Functionalized Y-Type Zeolites. Energy Fuels, 24, 1441-1448.
https://doi.org/10.1021/ef901077k
[23] Llewellyn, P.L., Bourrelly, S., Serre, C., Vimont, A., Daturi, M., Hamon, L., De Weireld, G., Chang, J.S., Hong, D.Y., Kyu Hwang, Y., Hwa Jhung, S. and Ferey, G. (2008) High Uptakes of CO2 and CH4 in Mesoporous Metal-Organic Frameworks MIL-100 and MIL-101. Langmuir, 24, 7245-7250.
https://doi.org/10.1021/la800227x
[24] Zhang, Z., Zhao, Y., Gong, Q., Li, Z. and Li, J. (2013) MOFs for CO2 Capture and Separation from Flue Gas Mixtures: The Effect of Multifunctional Sites on Their Adsorption Capacity and Selectivity. Chemical Communications, 49, 653- 661.
https://doi.org/10.1039/C2CC35561B
[25] Boutin, A., Couck, S., Coudert, F.X., Serra-Crespo, P., Gascon, J., Kapteijn, F., Fuchs, A.H. and Denayer, J.F.M. (2011) Thermodynamic Analysis of the Breathing of Amino-Functionalized MIL-53(Al) upon CO2 Adsorption. Microporous and Mesoporous Materials, 140, 108-113.
[26] Stavitski, E., Pidko, E.A., Couck, S., Remy, T., Hensen, E.J.M., Weckhuysen, B.M., Denayer, J., Gascon, J. and Kapteijn, F. (2011) Complexity behind CO2 Capture on NH2-MIL-53. Langmuir, 27, 3970-3976.
https://doi.org/10.1021/la1045207
[27] Zhou, L., Fan, J., Cui, G., et al. (2014) Highly Efficient and Reversible CO2 Adsorption by Amine-Grafted Platelet SBA-15 with Expanded Pore Diameters and Short Mesochannel. Green Chemistry, 16, 4009-4016.
https://doi.org/10.1039/C4GC00832D
[28] Lu, W., Yuan, D., Sculley, J., et al. (2011) Sulfonate-Grafted Porous Polymer Networks for Preferential CO2 Adsorption at Low Pressure. Journal of the American Chemical Society, 133, 18126-18129.
https://doi.org/10.1021/ja2087773
[29] Wu, D., Xu, F., Sun, B., Fu, R., He, H. and Matyjaszewski, K. (2012) Design and Preparation for Porous Polymers. Chemical Reviews, 112, 3959-4015.
https://doi.org/10.1021/cr200440z
[30] Dawson, R., Cooper, A.I. and Adams, D.J. (2012) Nanoporous Organic Polymer Network. Progress in Polymer Science, 37, 530-563.
[31] Xiang, Z. and Cao, D. (2013) Porous Covalent-Organic Materials: Synthesis, Clean Energy Application and Design. Journal of Materials Chemistry A, 1, 2691-2718.
https://doi.org/10.1039/C2TA00063F
[32] Ding, S.Y. and Wang, W. (2013) Covalent Organic Frameworks (COFs): From Design to Applications. Chemical Society Reviews, 42, 548-568.
https://doi.org/10.1039/C2CS35072F
[33] Ben, T., Ren, H., Ma, S., Cao, D., Lan, J., Jing, X., Wang, W., Xu, J., Deng, F., Simmons, J.M., Qiu, S. and Zhu, G. (2009) Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area. Angewandte Chemie International Edition, 48, 9457-9460.
https://doi.org/10.1002/anie.200904637
[34] Ben, T., Pei, C., Zhang, D., Xu, J., Deng, F., Jing, X. and Qiu, S. (2011) Gas Storage in Porous Aromatic Frameworks (PAFs). Energy & Environmental Science, 4, 3991-3999.
https://doi.org/10.1039/c1ee01222c
[35] Lu, W., Yuan, D., Zhao, D., Schilling, C.I., Plietzsch, O., Muller, T., Brase, S., Guenther, J., Blumel, J., Krishna, R., Li, Z. and Zhou, H. (2010) Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation. Chemistry of Materials, 22, 5964-5972.
https://doi.org/10.1021/cm1021068
[36] Dawson, R., Stoeckel, E., Holst, J.R., Adams, D.J. and Cooper, A.I. (2011) Microporous Organic Polymers for Carbon Dioxide Capture. Energy & Environmental Science, 4, 4239-4245.
https://doi.org/10.1039/c1ee01971f
[37] Mohanty, P., Kull, L.D. and Landskron, K. (2011) Porous Covalent Electron-Rich Organonitridic Frameworks as Highly Selective Sorbents for Methane and Carbon Dioxide. Nature Communications, 2, 401.
https://doi.org/10.1038/ncomms1405
[38] Lu, W., Yuan, D., Sculley, J., Zhao, D., Krishna, R. and Zhou, H.C. (2011) Sul-fonate-Grafted Porous Polymer Networks for Preferential CO2 Adsorption at Low Pressure. Journal of the American Chemical Society, 133, 18126-18129.
https://doi.org/10.1021/ja2087773
[39] Lu, W.G., Sculley, J.P., Yuan, D.Q., Krishna, R. and Zhou, H.C. (2013) Carbon Dioxide Capture from Air Using Amine-Grafted Porous Polymer Networks. The Journal of Physical Chemistry C, 117, 4057-4061.
https://doi.org/10.1021/jp311512q
[40] Liu, L., Li, P., Zhu, L., Zou, R. and Zhao, Y. (2013) Microporous Polymelamine Network for Highly Selective CO2 Adsorption. Polymer, 54, 596-600.
[41] Xu, C. and Hedin, N. (2013) Synthesis of Microporous Organic Polymers with High CO2-over-N2 Selectivity and CO2 Adsorption. Journal of Materials Chemistry A, 1, 3406-3414.
https://doi.org/10.1039/c3ta01160g
[42] Hu, J.X., Shang, H., Wang, J.G., Luo, L., Xiao, Q., Zhong, Y.J. and Zhu, W.D. (2014) Highly Enhanced Selectivity and Easy Regeneration for the Separation of CO2 over N2 on Melamine-Based Microporous Organic Polymers. Industrial & Engineering Chemistry Research, 53, 11828-11837.
https://doi.org/10.1021/ie501736t
[43] 胡敬秀, 张静, 邹建锋, 肖强, 钟依均, 朱伟东. 源自密胺基多孔聚合物的富氮微孔炭及选择性吸附CO2[J]. 物理化学学报, 2014, 30(6): 1169-1174.
[44] 王亚丹, 肖强, 钟依均, 朱伟东. 密胺苯二醛多孔聚合物/聚二甲基硅氧烷混合基质膜的制备及气体分离性能[J]. 物理化学学报, 2012.
[45] Xiao, Q., Wen, J.J., Guo, Y.N., et al. (2016) Synthesis, Carbonization, and CO2 Adsorption Properties of Phloroglucinol-Melamine-Formaldehyde Polymeric Nanofibers. Industrial & Engineering Chemistry Research, 55, 12667-12674.
https://doi.org/10.1021/acs.iecr.6b03494