JISP  >> Vol. 6 No. 3 (July 2017)

    基于特征矢量的不同分辨率图像匹配方法
    A Feature-Vector Based Multi-Resolution Image Matching Method

  • 全文下载: PDF(1562KB) HTML   XML   PP.147-159   DOI: 10.12677/JISP.2017.63018  
  • 下载量: 607  浏览量: 1,208  

作者:  

刘 超,钱 丰,刘文松:中国电子科技集团公司第二十八研究所,江苏 南京

关键词:
分辨率特征矢量图像匹配Resolution Feature-Vector Image Matching

摘要:

针对分辨率不同或者分辨率未知情况下进行图像匹配比较困难的问题,提出一种基于特征矢量的图像匹配方法。该方法对模板图像与待匹配图像的特征点的特征矢量组进行比对,将满足匹配规则的特征点判为两幅图像中相同位置的同一特征点,然后根据多个识别特征点之间的几何关系进行图像匹配。通过对不同分辨率图像的匹配实验,表明该方法在图像特征点差异性较大时具有比较好的匹配效果。

Aiming at the matching problem of images with different or unknown resolutions, a feature-vector based matching method for multi-resolution images was proposed. Firstly, by comparing the key-point feature-vectors of object image with reference image, a point which satisfies matching rules can be taken as the same key-point of the two images, and then they can be matched by the geometry relation of multiple key-points. By a matching test for images with different resolutions, it can be concluded that the proposed method shows better performance for images with key- points which differ from each other obviously.

文章引用:
刘超, 钱丰, 刘文松. 基于特征矢量的不同分辨率图像匹配方法[J]. 图像与信号处理, 2017, 6(3): 147-159. https://doi.org/10.12677/JISP.2017.63018

参考文献

[1] 章为川, 孔祥楠, 宋文. 图像的角点检测研究综述[J]. 电子学报, 2015, 43(11): 2315-2321.
[2] Zuniga, O.A. and Haralick, R. (1983) Corner Detection Using the Facet Model. IEEE CVPR, 18, 30-37.
[3] Smith, S.M. and Brady, M. (1997) A New Approach to Low Level Image Processing. International Journal of Computer Vision, 23, 45-78.
https://doi.org/10.1023/A:1007963824710
[4] Rosten, E. and Porter, R. (2010) A Machine Learning Approach to Corner Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 105-117.
https://doi.org/10.1109/TPAMI.2008.275
[5] Klanderman, G.A., Huttenlocher, D.P. and Rucklidge, W.J. (1993) Comparing Images Using the Hausdorff Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15, 850-863.
[6] Lowe, D.G. (2004) Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60, 91-110.
https://doi.org/10.1023/B:VISI.0000029664.99615.94
[7] 陈至坤, 潘晓娣, 王福斌, 等. 基于Radon变换的图像轮廓提取方法研究[J]. 传感器与微系统, 2010, 29(2): 63-68.
[8] 马婧, 徐守时, 陈克. 基于Radon变换的图像角点角度提取算法[J]. 光电工程, 2009, 36(2): 126-131.