MS  >> Vol. 7 No. 5 (August 2017)

    溶胶–凝胶法制备BZT-0.5BCT铁电薄膜及其电学性能研究
    Sol-Gel Preparation of BZT-0.5BCT Ferroelectric Thin Films and Their Electrical Properties

  • 全文下载: PDF(1261KB) HTML   XML   PP.523-528   DOI: 10.12677/MS.2017.75069  
  • 下载量: 158  浏览量: 543   国家自然科学基金支持

作者:  

张力信,王 芳,吴 南,谢春霖,刘 涛,欧 云:湖南科技大学机械设备健康维护湖南省重点实验室,湖南 湘潭;
李 波:湘潭大学材料科学与工程学院,湖南 湘潭;
刘龙飞:湖南科技大学材料科学与工程学院,湖南 湘潭;
王 伟:中国三峡集团,四川 成都

关键词:
BZT-BCT铁电薄膜溶胶–凝胶法BZT-0.5BCT Ferroelectric Thin Films Sol-Gel

摘要:

(1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3 (BZT-xBCT)是一类新型的无铅铁电材料,表现出良好的铁电、压电性能,特别是x = 0.5时,BZT-0.5BCT处于准同型相界区域,具有优异的压电性能,而铁电性的研究还较少。本文采用溶胶–凝胶方法在Pt(111)基底上制备了BZT-0.5BCT铁电薄膜。研究了不同退火工艺对薄膜结构、形貌和铁电性的影响。结果表明逐层退火的薄膜表现出更好的铁电性。

(1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) is a new lead-free ferroelectric materials, which has the best properties when the composition close to the morphotropic phase boundary. BZT- 0.5BCT has excellent piezoelectric property; however, the ferroelectric property is rarely studied. In this work, BZT-0.5BCT lead-free ferroelectric thin film has been synthesized on a Pt (111) substrate by sol-gel process. The structure, morphology and ferroelectric property are studied under different annealing process. The results indicated that BZT-0.5BCT ferroelectric thin film under layer-by-layer annealing process has better ferroelectric property than that annealed once.

文章引用:
张力信, 王芳, 吴南, 谢春霖, 刘涛, 李波, 刘龙飞, 欧云, 王伟. 溶胶–凝胶法制备BZT-0.5BCT铁电薄膜及其电学性能研究[J]. 材料科学, 2017, 7(5): 523-528. https://doi.org/10.12677/MS.2017.75069

参考文献

[1] Li, M., Pietrowski, M.J., De Souza, R.A., Zhang, H., Reaney, I.M., Cook, S.N., Kilner, J.A. and Sinclair, D.C. (2014) A Family of Oxide Ion Conductors Based on the Ferroelectric Perovskite Na0.5Bi0.5TiO3. Nature Materials, 13, 31-35.
https://doi.org/10.1038/nmat3782
[2] Grinberg, I., West, D.V., Torres, M., Gou, G., Stein, D.M., Wu, L., Chen, G., Gallo, E.M., Akbashev, A.R., Davies, P.K., et al. (2013) Perovskite Oxides for Visible-Light-Absorbing Ferroelec-tric and Photovoltaic Materials. Nature, 503, 509-512.
https://doi.org/10.1038/nature12622
[3] Cross, E. (2004) Materials Science: Lead-Free at Last. Nature, 432, 24-25.
https://doi.org/10.1038/nature03142
[4] Ren, X. (2004) Large Electric-Field-Induced Strain in Ferroelectric Crystals by Point-Defect-Mediated Reversible Domain Switching. Nature Materials, 3, 91-94.
https://doi.org/10.1038/nmat1051
[5] Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T. and Nakamura, M. (2004) Lead-Free Piezoceramics. Nature, 432, 84-87.
https://doi.org/10.1038/nature03028
[6] Nguyen, M.D., Dekkers, M., Houwman, E.P., Vu, H.T., Vu, H.N. and Rijnders, G. (2016) Lead-Free (K0.5Na0.5)NbO3 Thin Films by Pulsed Laser Deposition Driving MEMS-Based Pi-ezoelectric Cantilevers. Materials Letters, 164, 413- 416.
[7] Wang, Z., Cai, Z., Wang, H., Cheng, Z., Chen, J., Guo, X. and Kimura, H. (2017) Lead-Free 0.5 Ba (Ti0.8Zr0.2)O3-0.5 (Ba0.7 Ca0.3)TiO3 Thin Films with Enhanced Electric Properties Fabricated from Optimized Sol-Gel Systems. Materials Chemistry and Physics, 186, 528-533.
[8] Liu, W. and Ren, X. (2009) Large Piezoelectric Effect in Pb-Free Ceramics. Physical Review Letters, 103, Article ID: 257602.
https://doi.org/10.1103/PhysRevLett.103.257602
[9] Damjanovic, D.A., Biancoli, L. Batooli, A. Vahabzadeh, J. and Trodahl. J (2012) Elastic, Dielectric, and Piezoelectric Anomalies and Raman Spectroscopy of 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3. Applied Physics Letters, 100, Article ID: 192907.
https://doi.org/10.1063/1.4714703
[10] Hao, J., Bai, W., Li, W. and Zhai, J. (2012) Correlation between the Mi-crostructure and Electrical Properties in High-Performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Lead-Free Piezoelectric Ceramics. Journal of the American Ceramic Society, 95, 1998-2006.
[11] Li, W.L., Zhang, T.D., Xu, D., Hou, Y.F., Cao, W.P. and Fei, W.D. (2015) LaNiO3 Seed Layer Induced Enhancement of Piezoelectric Properties in (100)-Oriented (1−x)BZT −xBCT Thin Films. Journal of the European Ceramic Society, 35, 2041-2049.
[12] Li, W.L., Zhang, T.D., Hou, Y.F., Zhao, Y., Xu, D., Cao, W.P. and Fei, W.D. (2014) Giant Piezoelectric Properties of BZT-0.5BCT Thin Films Induced by Nanodomain Structure. RSC Advances, 4, 56933-56937.
https://doi.org/10.1039/C4RA08280J
[13] Bhardwaj, C., Daniel, B.S.S. and Kaur, D. (2013) Pulsed Laser Depo-sition and Characterization of Highly Tunable (1−x)Ba(Zr0.2Ti0.8)O3−x(Ba0.7Ca0.3)TiO3 Thin Films Grown on LaNiO3/Si Substrate. Journal of Physics and Chemistry of Solids, 74, 94-100.
[14] Kolekar, Y.D., Bhaumik, A., Shaikh, P.A., Ramana, C.V. and Ghosh, K. (2014) Polarization Switching Characteristics of 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 Lead Free Ferroelectric Thin Films by Pulsed Laser Deposition. Journal of Applied Physics, 115, Article ID: 154102.
https://doi.org/10.1063/1.4871673
[15] Luo, B.C., Wang, D.Y., Duan, M.M. and Li, S. (2013) Orientation-Dependent Piezoelectric Properties in Lead-Free Epitaxial 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 Thin Films. Applied Physics Letters, 103, Article ID: 122903.
https://doi.org/10.1063/1.4821918
[16] Wang, Z., Zhao, K., Guo, X., Sun, W., Jiang, H., Han, X., Tao, X., Cheng, Z., Zhao, H., Kimura, H., Yuan, G., Yin, J. and Liu, Z. (2013) Crystallization Phase Evolution and Ferroelectric Properties of Sol-Gel-Synthesized Ba(Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 Thin Films. Journal of Materials Chemistry C, 1, 522-530.
https://doi.org/10.1039/C2TC00020B
[17] Chi, Q.G., Zhang, C.H., Sun, J., Yang, F.Y., Wang, X. and Lei, Q.Q. (2014) Interface Optimization and Electrical Properties of 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 Thin Films Prepared by a Sol-Gel Process. The Journal of Physical Chemistry C, 118, 15220-15225.
https://doi.org/10.1021/jp5036103
[18] Lin, Y., Wu, G., Qin, N. and Bao, D. (2012) Structure, Dielectric, Ferroelectric, and Optical Properties of (1−x) Ba(Zr0.2Ti0.8) O3−x(Ba0.7Ca0.3)TiO3 Thin Films Prepared by Sol-Gel Method. Thin Solid Films, 520, 2800-2804.
[19] Kang, G., Yao, K. and Wang J. (2012) (1−x)Ba(Zr0.2Ti0.8)O3−x(Ba0.7Ca0.3)TiO3 Ferroelectric Thin Films Prepared from Chemical Solutions. Journal of the American Ceramic Society, 95, 986-991.