OJNS  >> Vol. 7 No. 3 (May 2019)

作者:  

曾曦霞:武汉大学生命科学学院,湖北 武汉

关键词:
洞穴鸟类繁殖生物学雪雀Cavity-Nesting Birds Reproductive Biology Montifringilla

摘要:

鸟类繁殖生物学知识是研究鸟类生活史理论的重要基石。也是许多野外鸟类学家十分感兴趣的方面。穴居鸟类是良好的生态测试物种,通过研究发现与开放筑巢的鸟类相比穴居鸟类有许多优势:1) 有较低的巢捕食率(但成鸟频繁回巢也会增加风险),并且拥有较长的发育期,因此穴居鸟类比开放筑巢的鸟类的窝卵数更多;2) 洞穴巢室具有保温性能好、捕食风险低、筑巢成功率高等优点。3) 挖洞物种在挖洞过程中投入的能量与窝卵数成反比。4) 与挖掘习性相比,窝卵数可能与成鸟死亡率有着更直接的关系。其中穴居鸟类可以分为初级巢和次级巢鸟类,两种筑巢类型的鸟在筑巢成功率、窝大小、成鸟存活率等重要生活史特征上也存在一定的差异。

The knowledge of bird reproductive biology is the building blocks of the theory of avian life history. It is also an area of great interest to many field ornithologists. Cavity-nesting birds are good ecologi-cal test species. The study suggests that cavity-nesters have many advantages over open-nesters: 1) They have a lower rate of nest predation (but frequent return of adult birds also increases the risk) and have a longer development period, so cavity-nesters have bigger clutch size than open nester; 2) the cavity chamber has good insulation performance, low risk of predation, nesting success rate is high. 3) The energy input of excavators in the process of excavating is inversely proportional to the clutch size. 4) The number of clutch size may be more directly related to adult mortality than exca-vators .The cavity-nesting birds can be divided into primary nest birds and secondary nest birds, and different species also have certain differences in nesting success rate, clutch size, survival rate of adult birds and other important life history characteristics.

1. 引言

自达尔文以来,专门从事野外鸟类研究的鸟类学家一直在积累有关构成一个物种繁殖生物学的这些元素的知识。这些知识不仅有助于人类对自然的理解 [1] ,而且有助于制定通用生活史进化的理论模式和流程 [2] 。此外,它可以为动物如何对全球气候变化进行生殖反应提供重要证据 [3] [4] 。不幸的是,目前关于鸟类物种繁殖生物学的知识存在着巨大的空白。例如,构成全球鸟类窝卵数的变化分析基础的数据集仅涵盖了世界上大约一半的鸟类物种 [5] 。其中洞穴巢鸟类是良好的生态测试物种,因为巢址容易接近,可以很容易地进行研究。洞穴筑巢鸟类的研究通常支持巢址限制的假设。其Von Haartman和Hilden是最早提出穴巢鸟类受巢址可用性限制的学者之一 [6] [7] 。

2. 鸟类繁殖生物学的研究现状

鸟类的生活史特征是在长期自然选择的过程中形成的、适应于其生活环境的生态模式和行为模式,鸟类生活史的进化是在鸟类学研究中一直充满活力的领域 [8] 。鸟类的繁殖生态学主要涵盖有繁殖时间、窝卵数、孵卵期和育雏期等,因此收集鸟类生活史的繁殖参数并且分析、研究成为生活史研究中非常重要的部分 [9] [10] 。目前世界上已知的鸟类的种类总数接近10,000种。在世界现存的近10,000种鸟类中,约30%的鸟类拥有完整的育种信息,相比之下,约30%的鸟类的育种生物学从未被描述过;接近40%的鸟类有部分育种数据 [11] 。在自然选择的作用下,这些种类的鸟在繁殖季节、孵化期、窝卵数、雏鸟期、雏鸟生长模式、繁殖成功率、交配制度和亲代抚育方式等许多方面表现出巨大差异 [12] 。研究表明,现存物种中39%的目和37%的科的知识可用性低于所有物种的水平,并且鸟类的繁殖信息严重偏向于北温带地区,包括窝卵数的纬度方向变化 [13] 、生活史的慢速连续体 [14] 和巢捕食驱动的生活史权衡 [15] ,在很大程度上建立在来自北温带,在那里相对较小的鸟类已经有了很好的数据记录。虽然从生态地理学的角度来看,热带森林拥有世界上最高的鸟类多样性 [16] 和最独特的鸟类群落但是已知的比较少的物种大多是在热带森林中繁殖的物种 [17] 。但是与其他栖息地的鸟类相比,森林鸟类得到的研究最少 [11] ,因为要进入热带雨林中鸟类的繁殖地和筑巢地点对于研究人员来说是相当困难的,因为热带雨林的特点是炎热、潮湿的气候和茂密的植被。

3. 洞穴鸟类的繁殖生物学研究

3.1. 洞穴鸟类的优势

一些研究统计并评估了一些洞穴的使用情况 [18] ,另一些研究则调查了鸟类数量和资源使用的变化,这些变化可能是由于巢穴位置的可用性变化造成的。鸟类数量可能会随着巢址的移除而下降 [19] ,或者随着巢箱的引入而上升 [20] 。

现有的数据表明挖掘能力、重复利用率和窝卵数之间没有很强的联系。在种内窝雏数和挖洞倾向的变化是不相关的 [21] 。

鸟类的筑巢类型多种多样。不同巢型之间具有一定的生态差异,这些差异一般与筑巢生物的生活史模式有关。在鸟类中,筑巢地点的选择(洞穴筑巢与开放式筑巢)已知会影响许多重要的生活史特征,如筑巢成功、窝卵数、孵化时间、筑巢期长度和孵化期间的成鸟存活率 [22] 。与开放式巢穴相比,洞巢具有保温性能好 [23] 、捕食风险低、筑巢成功率高等重要优势 [24] 。

3.2. 初级巢和次级巢穴

穴巢种分为两类,一类是初级穴巢种(自己挖巢穴),大多数鸟类为每一种繁殖尝试建造新巢穴 [25] [26] ,另一类是次级穴巢种(在已有的穴中筑巢),次级洞穴筑巢的鸟,不挖自己的巢,通常使用一个旧的,已经存在的洞穴,许多洞穴筑巢物种可能会多次重复使用旧巢穴 [27] [28] 。在自然繁殖状态下,大部分洞巢资源是由初级洞巢鸟建成的 [29] ,因此Newton (1994)认为如果初级洞巢鸟某区域没有生存,那么次级洞巢鸟也有一定可能消失 [30] 。

根据巢址限制假说(Nest site limitation hypothesis)的研究表明,弱势群体或非挖洞群体的巢穴数量有限,因此个体会利用不可预测的繁殖机会,在当前的尝试中最大化繁殖 [21] 。(Monkkonen和Orell (1997)提出,社会优势物种能够保护现有的洞穴,迫使亚优势物种进化为挖洞物种 [31] 。啄木鸟科(Picidae),鳾科(Sittidae),和一些山雀科(Paridae),都可能建一个新的洞或频繁重复使用旧洞,这个是因不同种而异的 [21] 。巢穴在这些物种中重复使用的原因是有争议的。在自然界中,非挖洞者比挖洞者居住的巢穴更容易发生破坏,因为他们使用的洞穴较老、高度低并且更加隐蔽(Li和Martin 1991) [32] 。两种筑巢类型的鸟在筑巢成功率、窝大小、巢期长短和成鸟存活率等重要生活史特征上存在一定的差异 [7] 。

3.3. 洞穴鸟类的窝卵数

解释鸟类窝卵数的变化在鸟类学上有着悠久的历史 [33] 。在已确定的一般模式中,与开放巢鸟类相比,洞穴筑巢的鸟窝卵数相对较大,传统上认为这是由于洞穴鸟巢捕食率较低 [34] 。捕食风险可能会限制窝卵数,例如,频繁的喂食访问父母的巢吸引捕食者 [35] [36] ;捕食风险和窝数之间的假定联系是由非挖洞筑巢物种异常大的窝卵数造成的 [37] 。

窝卵数增加与巢捕食减少和洞穴鸟类生长缓慢之间的普遍的联系已经被广泛接受,尽管其因果关系一直存在争议 [38] 。在洞穴鸟类中更大的窝卵数可以作为允许通过降低捕食率来降低雏鸟生长速率的一个协变量 [39] 。另一种选择是,像在开放巢中一样,巢捕食的增加,引起窝雏数减少,以增加额外尝试的能量 [40] 。

窝卵数和巢重复使用之间存在一定适度但不是特别强的正相关关系,它强烈地受到少数外围物种的存在的影响,而受种群间变异的影响很小。在挖洞过程中投入的能量与窝卵数成反比。如果更强的挖洞种在洞的建设上投入更多,则预测它们应该有更小的窝卵数 [40] 。

窝卵数和窝的数量的差异可能反映了与成鸟存活率有关的繁殖投资的差异 [41] 。种间比较表明,窝卵数和年生产能力(窝卵数 × 窝的数目)与成鸟存活率成负相关 [42] 。特别是,如果如lack所假设的那样较少的巢故障有利于较长的雏鸟发育期和较大的窝卵数,那么这两个特性应该按照假设窝成功的类似模式:开放巢的鸟(窝卵数少,雏鸟期短) < 非挖洞的洞穴鸟 < 挖洞的洞穴鸟(窝卵数多,雏鸟期长)的顺序变化 [38] [39] 。因此,开放式筑巢物种在产卵期间比洞穴筑巢物种更容易产卵失败 [43] 。

还有一些研究证据表明,窝卵数与几个啄木鸟物种的寿命之间存在负相关关系。例如,成年北闪雀的死亡率(约58%)高于其他啄木鸟的平均死亡率,而北闪雀也是啄木鸟中数量最多的一种 [21] 。相比之下,成年死亡率相对较低(7%~15%)的红冠啄木鸟的窝卵数要小得多。这两个物种都广泛地重复使用巢穴,这表明,与挖掘习性相比,窝卵数可能与成鸟死亡率有更直接的关系。

文章引用:
曾曦霞. 洞穴鸟类的繁殖生物学研究[J]. 自然科学, 2019, 7(3): 192-196. https://doi.org/10.12677/OJNS.2019.73028

参考文献

[1] Greene, H.W. (2005) Organisms in Nature as a Central Focus for Biology. Trends in Ecology & Evolution, 20, 23-27.
https://doi.org/10.1016/j.tree.2004.11.005
[2] Valcu, M., Dale, J., Griesser, M., Nakagawa, S. and Kempenaers, B. (2014) Global Gradients of Avian Longevity Support the Classic Evolutionary Theory of Ageing. Ecography, 37, 930-938.
https://doi.org/10.1111/ecog.00929
[3] Both, C., Artemyev, A.V., Blaauw, B., Cowie, R.J. and Dekhuijzen, A.J. (2004) Large-Scale Geographical Variation Confirms That Climate Change Causes Birds to Lay Earlier. Proceedings of the Royal Society B, 271, 1657-1662.
https://doi.org/10.1098/rspb.2004.2770
[4] Crick, H.Q.P. (2004) The Impact of Climate Change on Birds. IBIS, 146, 48-56.
https://doi.org/10.1111/j.1474-919X.2004.00327.x
[5] Jetz, W., Sekercioglu, C.H. and Böhning-Gaese, K. (2008) The Worldwide Variation in Avian Clutch Size across Species and Space. PLOS Biology, 6, e303.
https://doi.org/10.1371/journal.pbio.0060303
[6] Von Haartman, L. (1957) Adaptation in Hole-Nesting Birds. Evolution, 11, 339-347.
https://doi.org/10.1111/j.1558-5646.1957.tb02902.x
[7] Hilden, O. (1965) Habitat Selection in Birds. Annales Zoologici Fennici, 2, 53-75.
[8] Martin, T.E. (2004) Avian Life-History Evolution Has an Eminent Past: Does It Have a Bright Future? The Auk, 121, 289-301.
https://doi.org/10.2307/4090393
[9] Konishi, M., Emlen, S.T., Ricklefs, R.E. and Wingfield, J.C. (1989) Contributions of Bird Studies to Biology. Science, 246, 465-472.
https://doi.org/10.1126/science.2683069
[10] Saether, B.E. and Bakke, O. (2000) Avian Life History Variation and Contribution of Demographic Traits to the Popu-lation Growth Rate. Ecology, 81, 642-653.
https://doi.org/10.1890/0012-9658(2000)081[0642:ALHVAC]2.0.CO;2
[11] Xiao, H., Hu, Y., Lang, Z., et al. (2016) How Much Do We Know about the Breeding Biology of Bird Species in the World? Journal of Avian Biology, 48, 513-518.
https://doi.org/10.1111/jav.00934
[12] Walters, M. (2003) A Concise History of Ornithology. Yale University Press, New Haven.
[13] Lack, D. (1947) The Significance of Clutch-Size in the Partridge (Perdix perdix). Journal of Animal Ecology, 16, 19-25.
https://doi.org/10.2307/1503
[14] Hille, S.M. and Cooper, C.B. (2015) Elevational Trends in Life Histories: Revising the Pace-of-Life Framework. Bio-logical reviews of the Cambridge Philosophical Society, 90, 204-213.
https://doi.org/10.1111/brv.12106
[15] Martin, T.E. (1995) Avian Life History Evolution in Relation to Nest Sites, Nest Predation, and Food. Ecological Monographs, 65, 101-127.
https://doi.org/10.2307/2937160
[16] Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. and Kent, J. (2000) Biodiversity Hotspots for Conservation Priorities. Nature, 403, 853-858.
https://doi.org/10.1038/35002501
[17] Stattersfield, A.J., Crosby, M.J., Long, A.J. and Wege, D.C. (1998) Endemic Bird Areas of the World: Priorities for Biodiversity Conservation. BirdLife Conservation Series 7, BirdLife International.
[18] Mcellin, S.M. (1979) Nest Sites and Population Demographies of White-Breasted and Pigmy Nuthatches in Colorado. Condor, 81, 348-352.
https://doi.org/10.2307/1366958
[19] Mannan, R.W., Meslow, E.C. and Wight, H.M. (1980) Use of Snags by Birds in Douglas-Fir Forests, Western Oregon. Journal of Wildlife Management, 44, 787-797.
https://doi.org/10.2307/3808306
[20] Hogstad, O. and Stenberg, I. (1997) Breeding Success, Nestling Diet and Parental Care in the White-Backed Woodpecker Dendrocoposleucotos. Journal FürOrnithologie, 138, 25-38.
https://doi.org/10.1007/BF01651649
[21] Wiebe, K.L., Koenig, W.D. and Martin, K. (2006) Evolution of Clutch Size in Cavity Excavating Birds: The Nest Site Limitation Hypothesis Revisited. The American Naturalist, 167, 343-353.
https://doi.org/10.1086/499373
[22] Eberhard, J.R. (2002) Cavity Adoption and the Evolution of Coloniality in Cavity-Nesting Birds. Condor, 104, 240-247.
https://doi.org/10.1650/0010-5422(2002)104[0240:CAATEO]2.0.CO;2
[23] Joy, J.B. (2000) Characteristics of Nest Cavities and Nest Trees of the Red-Breasted Sapsucker in Coastal Montane-forests. Journal of Field Ornithology, 71, 525-530.
https://doi.org/10.1648/0273-8570-71.3.525
[24] Martin, T.E. (1995) Avian Life Histories in Relation to Nest Sites, Nest Predation and Food. Ecological Monographs, 65, 101-127.
https://doi.org/10.2307/2937160
[25] Cavitt, J.F., Pearse, A.T. and Miller, T.A. (1999) Brown Thrasher Nest Reuse: A Timing Saving Resource, Protection from Search Strategy Predators, or Cues for Nest-Site Selection? Condor, 101, 859-862.
https://doi.org/10.2307/1370076
[26] Hansell, M.H. (2000) Bird Nests and Construction Behaviour. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139106788
[27] Sedgwick, J.A. (1997) Sequential Cavity Use in a Cottonwood Bottomland. The Condor: Ornithological Applications, 99, 880-887.
https://doi.org/10.2307/1370138
[28] Aitken, K.E.H., Wiebe, K.L. and Martin, K. (2002) Nest-Site Reuse Patterns for a Cavity-Nesting Bird Community in Interior British Columbia. The Auk, 119, 391-402.
https://doi.org/10.2307/4089886
[29] 邓秋香, 周彤, 高玮. 落叶阔叶林中初级洞巢鸟在群落组织结构形成中的作用[J]. 东北林业大学学报, 2006, 34(6): 58-60.
[30] Newton, I. (1994) The Role of Nest Sites in Limiting the Numbers of Hole-Nesting Birds: A Review. Biological Con-servation, 70, 265-276.
https://doi.org/10.1016/0006-3207(94)90172-4
[31] Mönkkönen, M. and Orell, M. (1997) Clutch Size and Cavity Excavation in Parids (Paridae, the Limited Breeding Opportunities Hypothesis Tested. American Naturalist, 149, 1164-1174.
https://doi.org/10.1086/286045
[32] Li, P. and Martin, T.E. (1991) Nest-Site Selection and Nesting Success of Cavity-Nesting Birds in High Elevation Forest Drainages. The Auk, 108, 405-418.
[33] Slagsvold, T. (1982) Clutch Size Variation in Passerine Birds: The Nest Predation Hypothesis. Oecologia (Berlin), 54, 159-169.
https://doi.org/10.1007/BF00378388
[34] Alerstam, T. and Hogstedt, G. (1981) Evolution of Hole-Nesting in Birds. Ornis Scandinavica, 12, 188-193.
https://doi.org/10.2307/3676076
[35] Skutch, A.F. (1949) Do Tropical Birds Rear as Many Young as They Can Nourish? IBIS, 91, 430-455.
https://doi.org/10.1111/j.1474-919X.1949.tb02293.x
[36] Lima, S.L. (1987) Clutch Size in Birds: A Predation Perspective. Ecology, 68, 1062-1070.
https://doi.org/10.2307/1938378
[37] Martin, T.E. (1993) Nest Predation and Nest Sites. Bioscience, 43, 523-532.
https://doi.org/10.2307/1311947
[38] Lack, D. (1948) Natural Selection and Family Size in the Starling. Evolution, 2, 95-110.
https://doi.org/10.1111/j.1558-5646.1948.tb02734.x
[39] Lack, D. (1968) Bird Migration and Natural Selection. Oikos, 19, 1-9.
https://doi.org/10.2307/3564725
[40] Milonoff, M. (1989) Can Nest Predation Limit Clutch Size in Precocial Birds? Oikos, 55, 424-427.
https://doi.org/10.2307/3565604
[41] Charnov, E.L. and Krebs, J.R. (2010) On Clutch-Size and Fitness. IBIS, 116, 217-219.
https://doi.org/10.1111/j.1474-919X.1974.tb00241.x
[42] Saether, B.-E. (1988) Pattern of Covariation between Life-History Traits of European Birds. Nature, 331, 616-617.
https://doi.org/10.1038/331616a0
[43] Martin, T.E. and Li, P. (1992) Life History Traits of Open vs. Cavity-Nesting Birds. Ecology, 73, 579-592.
https://doi.org/10.2307/1940764