|
[1]
|
Benjamin, M., Toumi, H., Ralphs, J.R., et al. (2006) Where Tendons and Ligaments Meet Bone: Attachment Sites (‘En-theses’) in Relation to Exercise and/or Mechanical Load. Journal of Anatomy, 208, 471-490. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Rossetti, L., Kuntz, L.A., Kunold, E., et al. (2017) The Microstructure and Micromechanics of the Tendon-Bone Insertion. Nature Materials, 16, 664-670. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Benjamin, M., Moriggl, B., Brenner, E., et al. (2004) The “Enthesis Organ” Concept: Why Enthesopathies May Not Present as Focal Insertional Disorders. Arthritis & Rheumatism, 50, 3306-3313. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Benjamin, M. and McGonagle, D. (2001) The Anatomical Basis for Disease Localisation in Seronegative Spondyloarthropathy at Entheses and Related Sites. Journal of Anatomy, 199, 503-526. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Schett, G., Lories, R.J., D’Agostino, M., et al. (2017) Enthesitis: From Pathophysiology to Treatment. Nature Reviews Rheumatology, 13, 731-741. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Jacques, P., Lambrecht, S., Verheugen, E., et al. (2014) Proof of Concept: Enthesitis and New Bone Formation in Spondyloarthritis Are Driven by Mechanical Strain and Stromal Cells. Annals of the Rheumatic Diseases, 73, 437-445. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Paulissen, S.M., van Hamburg, J.P., Davelaar, N., et al. (2013) Synovial Fibroblasts Directly Induce Th17 Pathogenicity via the Cyclooxygenase/Prostaglandin E2 Pathway, In-dependent of IL-23. The Journal of Immunology, 191, 1364-1372. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Bergqvist, F., Carr, A.J., Wheway, K., et al. (2019) Divergent Roles of Prostacyclin and PGE2 in Human Tendinopathy. Arthritis Research & Therapy, 21, 74. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Gaffen, S.L. (2009) Structure and Signalling in the IL-17 Recep-tor Family. Nature Reviews Rheumatology, 9, 556-567. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Amatya, N., Garg, A.V. and Gaffen, S.L. (2017) IL-17 Signaling: The Yin and the Yang. Trends in Immunology, 38, 310-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Aggarwal, S., Ghilardi, N., Xie, M.H., de Sauvage, F.J. and Gurney, A.L. (2003) Interleukin-23 Promotes a Distinct CD4 T Cell Acti-vation State Characterized by the Production of Interleukin-17. The Journal of Biological Chemistry, 278, 1910-1914. [Google Scholar] [CrossRef]
|
|
[12]
|
Kenna, T.J., Davidson, S.I., Duan, R., et al. (2012) Enrichment of Circulating Interleukin-17-Secreting Interleukin-23 Receptor-Positive Gamma/Delta T Cells in Patients with Active An-kylosing Spondylitis. Arthritis & Rheumatism, 64, 1420-1429. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
McGonagle, D.G., McInnes, I.B., Kirkham, B.W., Sherlock, J. and Moots, R. (2019) The Role of IL-17A in Axial Spondyloarthritis and Psoriatic Arthritis: Recent Advances and Controversies. Annals of the Rheumatic Diseases, 78, 1167-1178. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Reinhardt, A., Yevsa, T., Worbs, T., et al. (2016) Inter-leukin-23-Dependent Gamma/Delta T Cells Produce Interleukin-17 and Accumulate in the Enthesis, Aortic Valve, and Ciliary Body in Mice. Arthritis & Rheumatology, 68, 2476-2486. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Cuthbert, R.J., Fragkakis, E.M., Dunsmuir, R., et al. (2017) Brief Report: Group 3 Innate Lymphoid Cells in Human Enthesis. Ar-thritis & Rheumatology, 69, 1816-1822. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Buonocore, S., Ahern, P.P., Uhlig, H.H., et al. (2010) Innate Lymphoid Cells Drive Interleukin-23-Dependent Innate Intestinal Pathology. Nature, 464, 1371-1375. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Geremia, A., Arancibia-Carcamo, C.V., Fleming, M.P., et al. (2011) IL-23-Responsive Innate Lymphoid Cells Are Increased in Inflammatory Bowel Disease. The Journal of Experi-mental Medicine, 208, 1127-1133. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Bridgewood, C., Watad, A., Russell, T., et al. (2019) Identification of Myeloid Cells in the Human Enthesis as the Main Source of Local IL-23 Production. Annals of the Rheumatic Diseases, 78, 929-933. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Sherlock, J.P., Joyce-Shaikh, B., Turner, S., et al. (2013) Interleukin 23 Is Critical in the Pathogenesis of Spondyloarthropathy and Acts on a Novel Population of Interleukin 23R+ Entheseal Resident Cells. The Lancet, 381, S14. [Google Scholar] [CrossRef]
|
|
[20]
|
Sherlock, J.P., Joyce-Shaikh, B., Turner, S.P., et al. (2012) IL-23 Induces Spondyloarthropathy by Acting on ROR-Gammat+ CD3+CD4−CD8− Entheseal Resident T Cells. Nature Medicine, 18, 1069-1076. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Brown, M.A., Kenna, T. and Wordsworth, B.P. (2016) Genetics of Anky-losing Spondylitis—Insights into Pathogenesis. Nature Reviews Rheumatology, 12, 81-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Siebert, S., Millar, N.L. and McInnes, I.B. (2019) Why Did IL-23p19 Inhibition Fail in AS: A Tale of Tissues, Trials or Translation? Annals of the Rheumatic Diseases, 78, 1015-1018. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
van Tok, M.N., Na, S., Lao, C.R., et al. (2018) The Initiation, but Not the Persistence, of Experimental Spondyloarthritis Is Dependent on Interleukin-23 Signaling. Frontiers in Immunology, 9, 1550. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Loi, F., Cordova, L.A., Pajarinen, J., et al. (2016) Inflammation, Fracture and Bone Repair. Bone, 86, 119-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Olsen, B.R., Reginato, A.M. and Wang, W. (2000) Bone Devel-opment. Annual Review of Cell and Developmental Biology, 16, 191-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wozney, J.M. (1998) The Bone Morphogenetic Protein Family: Multifunctional Cellular Regulators in the Embryo and Adult. European Journal of Oral Sciences, 106, 160-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Waite, K.A. and Eng, C. (2003) From Developmental Disorder to Heritable Cancer: It’s All in the BMP/TGF-Beta Family. Nature Reviews Genetics, 4, 763-773. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lories, R.J., Daans, M., Derese, I., et al. (2006) Noggin Haploinsufficiency Differentially Affects Tissue Responses in Destructive and Remodeling Arthritis. Arthritis & Rheumatism, 54, 1736-1746. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Lories, R.J., Derese, I. and Luyten, F.P. (2005) Modulation of Bone Morphogenetic Protein Signaling Inhibits the Onset and Progression of Ankylosing Enthesitis. Journal of Clinical Investigation, 115, 1571-1579. [Google Scholar] [CrossRef]
|
|
[30]
|
Rauner, M., Baschant, U., Roetto, A., et al. (2019) Transferrin Receptor 2 Controls Bone Mass and Pathological Bone Formation via BMP and Wnt Signaling. Nature Metabolism, 1, 111-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bennett, C.N., Ouyang, H., Ma, Y.L., et al. (2007) Wnt10b In-creases Postnatal Bone Formation by Enhancing Osteoblast Differentiation. Journal of Bone and Mineral Research, 22, 1924-1932. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Moon, R.T., Kohn, A.D., De Ferrari, G.V. and Kaykas, A. (2004) WNT and Beta-Catenin Signalling: Diseases and Therapies. Nature Reviews Genetics, 5, 691-701. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Piters, E., Boudin, E. and Van Hul, W. (2008) WNT Signaling: A Win for Bone. Archives of Biochemistry and Biophysics, 473, 112-116. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Day, T.F., Guo, X., Garrett-Beal, L., et al. (2005) WNT/Beta-Catenin Signaling in Mesenchymal Progenitors Controls Osteo-blast and Chondrocyte Differentiation during Vertebrate Skeletogenesis. Developmental Cell, 8, 739-750. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kawano, Y. and Kypta, R. (2000) Secreted Antagonists of the WNT Signalling Pathway. Journal of Cell Science, 116, 2627-2634. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Li, X., Liu, P., Liu, W., et al. (2005) Dkk2 Has a Role in Terminal Osteoblast Differentiation and Mineralized Matrix Formation. Nature Genetics, 37, 945-952. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Haynes, K.R., Pettit, A.R., Duan, R., et al. (2012) Excessive Bone Formation in a Mouse Model of Ankylosing Spondylitis Is Associated with Decreases in WNT Pathway Inhibitors. Arthritis Research & Therapy, 14, R253. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Heiland, G.R., Appel, H., Poddubnyy, D., et al. (2012) High Level of Func-tional Dickkopf-1 Predicts Protection from syNdesmophyte Formation in Patients with Ankylosing Spondylitis. Annals of the Rheumatic Diseases, 71, 572-574. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Yang, J., Andre, P., Ye, L. and Yang, Y.-Z. (2015) The Hedgehog Signalling Pathway in Bone Formation. International Journal of Oral Science, 7, 73-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ruiz-Heiland, G., Horn, A., Zerr, P., et al. (2012) Blockade of the Hedgehog Pathway Inhibits Osteophyte Formation in Arthritis. Annals of the Rheumatic Diseases, 71, 400-407. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Dittmann, K., Wuelling, M., Uhmann, A., et al. (2014) Inactivation of Patched1 in Murine Chondrocytes Causes Spinal Fusion without Inflammation. Arthritis & Rheumatology, 66, 831-840. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Daoussis, D., Filippopoulou, A., Liossis, S.N., et al. (2015) An-ti-TNFalpha Treatment Decreases the Previously Increased Serum Indian Hedgehog Levels in Patients with Ankylosing Spondylitis and Affects the Expression of Functional Hedgehog Pathway Target Genes. Seminars in Arthritis and Rheumatism, 44, 646-651. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chen, X., Macica, C., Nasiri, A., Judex, S. and Broadus, A.E. (2007) Mechanical Regulation of PTHrP Expression in Entheses. Bone, 41, 752-759. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Han, X., Guo, L., Wang, F., Zhu, Q.S. and Yang, L. (2014) Con-tribution of PTHrP to Mechanical Strain-Induced Fibrochondrogenic Differentiation in Entheses of Achilles Tendon of Miniature Pigs. Journal of Biomechanics, 47, 2406-2414. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Han, X., Zhuang, Y., Zhang, Z., Guo, L. and Wang, W. (2016) Regulatory Mechanisms of the Ihh/PTHrP Signaling Pathway in Fibrochondrocytes in Entheses of Pig Achilles Tendon. Stem Cells International, 2016, Article ID: 8235172. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Mouterde, G., Aegerter, P., Correas, J.M., et al. (2014) Value of Contrast-Enhanced Ultrasonography for the Detection and Quantifica-tion of Enthesitis Vascularization in Patients with Spondyloarthritis. Arthritis Care & Research, 66, 131-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Hakeda, Y., Nakatani, Y., Kurihara, N., et al. (1985) Prostaglandin E2 Stimulates Collagen and Non-Collagen Protein Synthesis and Prolyl Hydroxylase Activity in Osteoblastic Clone MC3T3-E1 Cells. Biochemical and Biophysical Research Communications, 126, 340-345. [Google Scholar] [CrossRef]
|
|
[48]
|
Lie, E., Kristensen, L.E., Forsblad-d’Elia, H., et al. (2015)The Effect of Comedication with Conventional Synthetic Disease Modifying Antirheumatic Drugs on TNF Inhib-itor Drug Survival in Patients with Ankylosing Spondylitis and Undifferentiated Spondyloarthritis: Results from a Na-tionwide Prospective Study. Annals of the Rheumatic Diseases, 74, 970-978. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Gladman, D.D., Kavanaugh, A., Gomez-Reino, J.J., et al. (2018) Therapeutic Benefit of Apremilast on Enthesitis and Dactylitis in Patients with Psoriatic Arthritis: A Pooled Anal-ysis of the PALACE 1-3 Studies. RMD Open, 4, e669. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Marzo-Ortega, H., McGonagle, D., Jarrett, S., et al. (2005) Infliximab in Combination with Methotrexate in Active Ankylosing Spondylitis: A Clinical and Imaging Study. Annals of the Rheumatic Diseases, 64, 1568-1575. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
McInnes, I.B., Kavanaugh, A., Gottlieb, A.B., et al. (2013) Efficacy and Safety of Ustekinumab in Patients with Active Psoriatic Arthritis: 1 Year Results of the Phase 3, Multicentre, Dou-ble-Blind, Placebo-Controlled PSUMMIT 1 Trial. The Lancet, 382, 780-789. [Google Scholar] [CrossRef]
|
|
[52]
|
Dubash, S., Bridgewood, C., McGonagle, D. and Mar-zo-Ortega, H. (2019) The Advent of IL-17A Blockade in Ankylosing Spondylitis: Secukinumab, Ixekizumab and Be-yond. Expert Review of Clinical Immunology, 15, 123-134. [Google Scholar] [CrossRef]
|