轻度认知障碍及其与生活方式的关系研究进展
Research Progress on Mild Cognitive Impairment and Its Relationship with Lifestyle
DOI: 10.12677/ACM.2019.912215, PDF, HTML, XML, 下载: 752  浏览: 6,821  科研立项经费支持
作者: 侯继文, 魏亚琳, 谭巧文, 彭 琳, 邓志莹, 张俊青, 邹超斌, 郭宗君*:青岛大学附属医院,老年医学科,山东 青岛
关键词: 轻度认知障碍生活方式保护因素危险因素Mild Cognitive Impairment Lifestyle Protective Factors Risk Factors
摘要: 轻度认知障碍是正常认知和痴呆之间的一个不稳定阶段,具有高患病率及向痴呆的高转化率的特点,且一旦进展为痴呆将不可逆转,家庭和社会将面临沉重压力。国内外目前研究表明:年龄、性别、教育程度、生活方式、患有慢性病、抑郁状态等因素与轻度认知障碍的发生与发展相关。本文选择生活方式这一可控因素对轻度认知障碍的影响作详细综述,找出其中的保护因素及危险因素;以期针对每个老年人的具体情况,加强/鼓励具有保护作用的生活方式,减弱/戒掉具有高风险的生活方式,为老年人认知功能下降进行预防和延缓提供干预策略。
Abstract: Mild cognitive impairment (MCI) is an unstable stage between normal cognition and dementia, which has the characteristics of high prevalence rate and high conversion rate to dementia, and once the development of dementia will be irreversible, the family and society will face heavy pressure. Current studies at home and abroad show that age, sex, education level, lifestyle, chronic diseases, depression and other factors are related to the occurrence and development of MCI. This paper reviewed lifestyle as a controllable factor on MCI in detail, and found out the protective factors and risk factors, so as to strengthen/encourage protective lifestyles, weaken/abstain high-risk lifestyles, and provide intervention strategies for preventing and delaying the decline of cognitive function in the elderly.
文章引用:侯继文, 魏亚琳, 谭巧文, 彭琳, 邓志莹, 张俊青, 邹超斌, 郭宗君. 轻度认知障碍及其与生活方式的关系研究进展[J]. 临床医学进展, 2019, 9(12): 1387-1395. https://doi.org/10.12677/ACM.2019.912215

1. 引言

我国目前遭遇人口老龄化带来一系列难题的挑战,其中痴呆导致老人失能失智,单靠家庭成员来照顾无疑是非常艰难的,然而目前社区服务提供的照护项目奇缺,能够为严重失能失智老年人提供专业照护的机构严重不足,且花费巨大 [1]。就在2019年11月2日,我国药品监督管理局刚刚批准了用于治疗轻中度阿尔茨海默病的药物——甘露特钠(代号:GV-971) [2]。但临床经验尚未可知,所以目前依然缺乏针对痴呆有效治疗方法。因此,作为老年痴呆的前期——轻度认知障碍(Mild cognitive impairment, MCI),它具有转归痴呆的高转化率;据调查MCI以每年10%~l5%的速度发展到AD,是认知功能正常(normal cognitive, NC)退化速度的10倍 [3],但对MCI的早期干预能够有效延缓病情进展 [4],因而MCI是当前研究认知功能的热点。

研究发现生活方式与轻度认知障碍相关,许多观察性研究表明生活方式对MCI的相对危险度为0.5~2.0 [5] [6] [7]。并且目前还没有美国FDA批准的MCI药理学治疗方法 [8]。因此,积极探讨生活方式对MCI人群的影响,得出生活方式中的保护因素和危险因素,从而指导该类人群采取健康的生活方式,对于延缓MCI进展为痴呆,稳定MCI状态,甚至逆转到NC具有重要意义。

2. MCI概述

2.1. MCI诊断标准

到目前为止还没有统一的轻度认知障碍诊断标准,公认的最早是由美国学者Petersen于1999年提出的梅奥标准 [9]。但其主要是遗忘型MCI的诊断。目前MCI诊断主要为四点 [10] :1) 患者或其关系亲密的人提出,或者是有经验的临床医师发现有认知功能损害;2) 通过认知试验检测出存在单个或多个认知功能域损害的客观证据;3) 允许有复杂的工具性日常能力轻度损害,但日常基本生活能力保持独立;4)尚未诊断为痴呆。根据是否记忆障碍可分为两种亚型:遗忘型MCI、非遗忘型MCI。通过是否为单一认知域的损害,进一步分为4种亚型:单认知域遗忘型MCI、多认知域遗忘型MCI;单认知域非遗忘型MCI、多认知域非遗忘型MCI,见表1 [11]。

Table 1. Classification and characteristics of MCI

表1. MCI分类及特征

注:MCI = 轻度认知功能障碍。

2.2. MCI患病率及转归

MCI患病率较高,且随年龄的增加呈上升趋势。美国梅奥诊所研究发现MCI患病率为:60~64岁为6.7%,65~69岁为8.4%,70~74岁为10.1%,75~79岁为14.8%,80~84岁为25.2%。随访2年,65岁以上MCI患者的累计痴呆发生率为14.9% [12]。我国学者贾建军通过调查得出年龄 > 65岁老年人群中MCI患病率为10%~20% [13]。随着老龄化的进程加快,MCI的患病基数不断增加,需要我们尽早提出迎接挑战的策略。MCI基本明确有4种转归结局,即1) 发展为老年性痴呆(AD);2) 发展为其他类型痴呆(额颞叶痴呆、路易体痴呆等);3) 不进展,不好转,稳定在MCI;4) 逆转回NC状态 [14]。Hu C [15] 通过系统回顾和荟萃分析得出MCI的稳定疾病率为45%,复常率为15%,痴呆率为34%和阿尔茨海默病率为28%。当然不同的研究中MCI的转归不同。如在MCI转化为AD的研究中,我国学者王鲁宁 [16] 在文章中指出遗忘型MCI进展为AD的年转化率为大约10%~15%,而对于NC进展为AD的年转化率仅为1%~2%。MCI逆转为NC状态研究中,Wood, H等 [17] 通过荟萃分析得出MCI向NC逆转的发生率为2%~53%,综合所有25项研究的数据,从遗忘型MCI到NC的总复常率为24%。我们可以看出MCI老年人相较于NC老年人有着明显增高的转化为AD的概率,同时MCI也可以逆转回NC。

3. 生活方式对MCI的影响

3.1. 饮酒

饮酒是否会导致认知功能下降的问题,目前研究结果尚未统一,这部分地解释了认知功能与饮酒剂量相关的问题 [18]。不同饮酒剂量(从不饮酒、适量饮酒及过度饮酒)对认知功能有着不同的作用。目前大量研究 [6] [18] [19] [20] [21] 表明饮酒与认知功能下降风险呈U或J型关系,即:大量饮酒、戒酒或从不饮酒是认知功能下降的危险因素,而适度具有保护作用。酒精对认知功能的影响可能通过以下机制实现:1) 酒精的神经毒性效应可能具体涉及谷氨酸能细胞密度高的区域,如海马中的额叶或皮质下细胞,这些是认知过程中的关键结构 [22] [23]。2) 乙酰胆碱有助于学习和记忆 [24],酒精可能通过调控海马乙酰胆碱的释放而对认知产生保护作用。在大鼠实验中,较高浓度的乙醇(2.4 g/kg)抑制乙酰胆碱的释放,而低浓度的乙醇(0.8 g/kg)刺激乙酰胆碱的释放 [25]。Anttila的研究结果 [6] :经常饮酒和从不饮酒的人在老年患MCI的风险是偶尔饮酒者的两倍多。另外,意大利的一项前瞻性的研究 [26] 对121名年龄在65岁至84岁之间的MCI患者进行了饮酒对MCI发病率的影响研究,通过3.5年的随访发现每天1.0~14.9克酒精摄入量的MCI患者患痴呆症的比率约为不饮酒者的85%,也与适量饮酒是MCI保护性因素研究一致。而国内王潇 [27] 等通过构建决策树模型得出过量饮酒是MCI的危险因素。然而,少量研究表明即使适度的饮酒也是对认知功能是有害的,如Topiwala一项随访30年的观察研究显示 [28] :适度饮酒(14~21个单位/周)的人海马萎缩的几率也会增加。还有研究显示没有足够证据表明轻度至中度饮酒与痴呆风险降低之间存在因果关系 [29] [30] [31]。饮酒对认知功能的影响不明确也可能是因为饮酒可能带来的好处被事故和酒精相关疾病的风险所抵消,这些疾病包括胰腺炎、肝硬化、上消化系统癌症等 [32] [33]。因此,建议对于躯体功能正常的MCI患者,可以保持适量饮酒的习惯,但需要密切观察。

3.2. 吸烟

根据目前国内外的研究结果,绝大部分支持吸烟是认知功能的损害的危险因素 [34] [35] [36]。韩国的研究发现长期戒烟者相较于持续吸烟者降低了认知功能损害的风险(HR: 0.68; 95% CI: 0.48~0.96) [34]。国内研究发现吸烟的人患MCI的风险比不吸烟者高2.33~3.22倍 [37]。一项鹿特丹的研究显示,平均随访吸烟老年人时间7.1年,吸烟与认知功能下降风险(HR 1.47, 95% CI 1.18~1.86) [38]。吸烟增加认知障碍的风险可能与如下原因相关:1) 香烟烟雾含有许多细胞毒性化学物质,如一氧化碳、亚硝胺、芳烃、酚类和多核芳香化合物 [39],其通过积累自由基,激活神经胶质细胞,持续开放离子通道,增强神经元可塑性而导致神经元死亡 [40]。2) 吸烟通过降低高密度脂蛋白胆固醇(HDL-C)及增加甘油三脂(TG)引起血管损害和认知功能损害。也有研究者发现香烟中的尼古丁可能对认知功能起到有益的作用 [41] [42]。其中Newhouse研究发现,经皮尼古丁(15毫克/天)治疗6个月改善了a-MCI受试者的认知能力 [42]。由于实验观察的研究时间较短,安全性及疗效还有待进一步证实。综上所述,目前普遍认为吸烟对认知功能是有害的,且鉴于吸烟对于人体血管内皮的损害及肺癌的风险,建议及早戒烟。

3.3. 睡眠障碍

睡眠障碍是老年人生活中常见难题,据报道,有多达50%的老年人有慢性睡眠障碍 [43]。虽然其中有一部分原因是由于大脑功能正常的衰退,但仍有一部分原因是由于神经变性引起的。睡眠障碍是认知功能降低的危险因素 [44] [45] [46]。其中失眠、昼夜节律紊乱、睡眠呼吸暂停(SBD)、日间嗜睡等与认知功能降低关系密切。睡眠障碍导致认知功能下降的机制有:1) 通过干扰神经通路,主要是环磷酸腺苷(cAMP)和γ-氨基丁酸(GABA)信号传导通路,从而影响突触可塑性。2) 通过破坏神经及促进大脑各区域(特别是海马区)的神经炎性反应,发生神经退行性疾病,进而加重认知功能的损害 [47]。关于睡眠持续时间与MCI也呈现近似“U形”的关系,结果发现睡眠持续时间的每天7~8小时为最低的MCI风险 [48],而每天小于5小时或大于9小时的睡眠持续时间是认知功能的危险因素 [49]。综上所述,睡眠与认知功能相关,睡眠障碍是认知功能损害的危险因素,适量的睡眠时间是MCI的保护因素。

3.4. 体育运动

目前普遍研究认为体育运动对认知功能具有保护作用 [50] [51] [52]。一项对33,816名非痴呆受试者随访的荟萃分析得出,进行高强度体力活动的受试者受到显著保护(−38%) (HR 0.62, 95%CI 0.54~0.70; P < 0.00001);且即使是低至中度强度运动,也显示出其对认知障碍的显着保护(−35%) (HR 0.65, 95% CI 0.57~0.75; P < 0.00001) [53]。体育运动通过以下机制对认知功能发挥保护作用:1) 体育运动可以增加大脑的白质、灰质结构及海马体积,提高认知能力和记忆能力,并防止神经退行性过程 [54] [55]。2) 体育锻炼通过降低促炎细胞因子水平和提高周围神经营养因子的浓度来延缓MCI患者的认知减退 [56]。3) 有氧运动使脑血流增加,为脑组织提供更多的氧气和葡萄糖供应,并提高神经递质的可用性和神经效率 [57]。但是,目前在针对运动的类型(如散步、慢跑、太极、跳舞和力量训练结合有氧训练)、运动强度(低、中、高等)及运动持续时间(3、6、12个月)和频率等方面尚缺乏大量的对照研究比较 [7]。综上所述,针对不同的老年人具体情况选择安全的体育运动对MCI是有益的。

3.5. 兴趣爱好

目前的研究普遍表明兴趣爱好对认知功能有保护作用 [27] [36]。一项6586名受试者的随访5年的研究发现,老年人有兴趣爱好者患MCI风险下降41% [58]。另一项我国对于80岁以上老年人的随访研究发现,与“从不”看电视或听广播、阅读书籍或报纸、打牌或打麻将的人相比,几乎每天从事这类活动的人减少了MCI的风险 [59]。这可能是因为积极的生活方式可以使相关的神经网络更有效或更具可塑性,从而导致延迟痴呆的发病和认知恶化 [60]。也有研究提出兴趣爱好与教育水平之间存在显着的相互作用,且受过教育的老年人兴趣爱好对认知功能的有益影响大于未受过教育的老年人 [58] [59]。因此,根据老年人的自身条件,如教育程度、经济水平、社会氛围,可以推荐合适的兴趣爱好,以利于维持认知功能正常。

3.6. 社会交往活动

社会交往活动是指:与他人结伴外出购物、游玩、聚会、运动等集体活动,目前研究表明社会交往活动是MCI的保护性因素 [61] [62]。一项关于社区MCI随访研究显示更多地参与社会交往活动有利于预防或延迟MCI老年人进一步认知能力下降;较少参与社交活动可能标志着MCI即将出现认知下降 [63]。社交活动可以通过以下几种方式影响认知能力。1) 通过社会环境的复杂性。环境复杂性是认知储备的重要因素,可能是通过激活和加强各种神经生物通路,使MCI患者能够更好地补偿任何可能的的大脑变化(例如衰老、抑郁、AD等) [64]。2) 证据表明,参与认知刺激活动,包括社交活动(例如玩游戏),甚至会直接影响构成阿尔茨海默病淀粉样斑块的Aβ蛋白的沉积 [65]。3) 研究表明,压力对大脑的有害影响导致认知能力下降或损伤,参加社会活动也可以通过减少压力水平来帮助认知 [61]。

3.7. 饮食习惯

许多流行病学研究已经调查了个体食物或营养类别对认知功能的影响 [66],但这种方法没有考虑到一起消费的不同食物和营养物质的协同效应。因此,越来越多的注意力指向整体饮食模式,因为它们能够更全面地表达相关个体食物的摄入情况,并解释它们之间可能的相互作用 [67]。目前研究的健康饮食模式有:地中海饮食模式(aMED),抗高血压的饮食方法(DASH),健康饮食指数(AHEI)-2010,素食饮食指数(PDI),健康素食饮食指数(hPDI),法国国家营养与健康计划指南评分(PNNS-GS)和推荐食物评分(RFS)等,它们与MCI风险均呈负相关 [67] [68]。一项平均随访时间近20年的大型前瞻性队列研究中,得出其中aMED降低认知功能下降的风险最明显 [68]。aMED是指蔬菜、豆类、水果、谷物和不饱和脂肪酸为主,伴鱼肉、家禽、蛋类,偶尔摄入肉类和饱和脂肪酸,以及适度的酒精量。健康饮食模式对认知功能的保护作用如下:1) 人类研究一直发现坚持健康的饮食模式与患慢性病的风险较低有关 [69],而慢性病是导致年龄相关的认知能力下降的主要因素 [70]。2) 健康的饮食模式可以减少慢性炎症和氧化应激,这也与神经退行性疾病的病理生理学有关 [71] [72]。3) 动物模型和人体研究的新证据表明:这些饮食模式的某些成分(蔬菜、水果和全谷类)有利于胃肠道微生物群 [73],它可以影响中枢神经系统 [74]。综上所述,健康的饮食模式可以通过代谢、炎症和微血管功能的有利变化来改善认知。

4. 小结

通过文献回顾,目前研究表明:在生活方式中,体育运动、兴趣爱好(如阅读书籍或报纸,打牌或打麻将等)、健康的饮食模式(如地中海饮食aMED等)、较多地参与社会交往活动是MCI的保护因素;饮酒对MCI风险产生的是“U”型关系,即大量饮酒、戒酒或从不饮酒是MCI的危险因素,而适度饮酒具有保护作用;睡眠持续时间也对MCI风险产生的是“U”型关系,即睡眠持续时间为每天7~8小时为MCI保护因素,而每天小于5小时或大于9小时是MCI危险因素;而吸烟和睡眠障碍如(失眠、昼夜节律紊乱、日间嗜睡、睡眠呼吸暂停等)被普遍认为是MCI的危险因素。

本文仍有一定的局限性,还有部分生活方式未进行评述,如饮茶、使用智能手机及是否与家人一起居住等,以及多种不同生活方式之间的交互影响;未来可加入研究更多的生活方式及不同生活方式交互作用对MCI的影响,以便为老年人MCI的预防或延缓提供更多策略。针对每个老年人的具体情况,加强/鼓励具有保护作用的生活方式,减弱/戒掉具有高风险的生活方式,助力健康老龄化的实现。

致谢

感谢我的导师郭宗君教授,感谢老师对我论文的指导,他严谨细致、善于抓关键问题的工作作风以及对医学事业的坚守是我工作、学习中榜样;感谢我的同学,给与我收集临床资料及查阅文献的帮助;感谢山东省自然科学基金对团队项目的基金支持。

基金项目

山东省自然科学基金(ZR2012HM049)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] 彭晨, 吴明. 我国老年人失能失智及长期照护的现状[J]. 解放军预防医学杂志, 2016(3): 382-384.
[2] 岳玲, 王涛, 肖世富. 阿尔茨海默病诊断与治疗研究进展[J]. 张江科技评论, 2019, 12(1): 12-14.
[3] Petersen, R.C. (2000) Mild Cognitive Impairment: Transition between Aging and Alzheimer’s Disease. Neurologia (Barcelona, Spain), 15, 93-101.
https://doi.org/10.1016/S0197-4580(00)82678-0
[4] 韩晓娟. MCI的治疗进展[C]//中华医学会. 第十八次全国神经病学学术会议论文汇编, 2015.
[5] Yoshitake, T., Kiyohara, Y., Kato, I., et al. (1995) Incidence and Risk Factors of Vascular Dementia and Alzheimer’s Disease in a Defined Elderly Japanese Population: The Hisayama Study. Neurology, 45, 1161-1168.
https://doi.org/10.1212/WNL.45.6.1161
[6] Anttila, T., et al. (2004) Alcohol Drinking in Middle Age and Subsequent Risk of Mild Cognitive Impairment and Dementia in Old Age: A Prospective Population Based Study. BMJ, 329, 539.
https://doi.org/10.1136/bmj.38181.418958.BE
[7] 周媛媛, 周香莲, 王杰, 等. 轻度认知功能障碍向痴呆进展的危险因素及保护因素研究[J]. 中国全科医学, 2018, 21(33): 120-127.
[8] Roh, S. and Evins, A.E. (2012) Possible Role of Nicotine for the Treatment of Mild Cognitive Impairment. Expert Review of Neurotherapeutics, 12, 531-533.
https://doi.org/10.1586/ern.12.36
[9] Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G. and Kokmen, E. (1999) Mild Cognitive Impairment: Clinical Characterization and Outcome. Archives of Neurology, 56, 303-308.
https://doi.org/10.1001/archneur.56.3.303
[10] Winblad, B., Palmer, K., Kivipelto, M., et al. (2004) Mild Cognitive Impairment—Beyond Controversies, towards a Consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256, 240-246.
https://doi.org/10.1111/j.1365-2796.2004.01380.x
[11] Petersen, R.C. (2004) Mild Cognitive Impairment as a Diagnostic Entity. Journal of Internal Medicine, 256, 183-194.
https://doi.org/10.1111/j.1365-2796.2004.01388.x
[12] Petersen, R.C., et al. (2018) Practice Guideline Update Summary: Mild Cognitive Impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology, 90, 126-135.
https://doi.org/10.1212/WNL.0000000000004826
[13] 贾建军. 老年认知功能障碍的筛查与诊断[J]. 中华老年心脑血管病杂志, 2016(4): 337-338.
[14] Malek-Ahmadi, M. (2016) Reversion from Mild Cognitive Impairment to Normal Cognition: A Meta-Analysis. Alzheimer Disease and Associated Disorders, 30, 324-330.
https://doi.org/10.1097/WAD.0000000000000145
[15] Hu, C., et al. (2017) The Prevalence and Progression of Mild Cognitive Impairment among Clinic and Community Populations: A Systematic Review and Meta-Analysis. International Psychogeriatrics, 29, 1595-1608.
https://doi.org/10.1017/S1041610217000473
[16] 王鲁宁. 老年人轻度认知功能障碍的研究进展[J]. 中华保健医学杂志, 2005, 11(1): 6-8.
[17] Wood, H. (2016) Alzheimer Disease: Meta-Analysis Finds High Reversion Rate from MCI to Normal Cognition. Nature Reviews Neurology, 12, 189.
https://doi.org/10.1038/nrneurol.2016.29
[18] Gutwinski, S., Schreiter, S., Priller, J., et al. (2018) Drink and Think: Impact of Alcohol on Cognitive Functions and Demen-tia—Evidence of Dose-Related Effects. Pharmacopsychiatry, 51, s-0043-118664.
[19] Piazza-Gardner, A.K., et al. (2013) The Impact of Alcohol on Alzheimer’s Disease: A Systematic Review. Aging & Mental Health, 17, 133-146.
https://doi.org/10.1080/13607863.2012.742488
[20] O’Keefe, E.L., et al. (2018) Alcohol and CV Health: Jekyll and Hyde J-Curves. Progress in Cardiovascular Diseases, 61, 68-75.
https://doi.org/10.1016/j.pcad.2018.02.001
[21] Rehm, J., et al. (2019) Alcohol Use and Dementia: A Systematic Scoping Review. Alzheimer’s Research & Therapy, 11, Article No. 1.
https://doi.org/10.1186/s13195-018-0453-0
[22] Brust, J.C. (2010) Ethanol and Cognition: Indirect Effects, Neurotoxicity and Neuroprotection: A Review. International Journal of Environmental Research and Public Health, 7, 1540-1557.
https://doi.org/10.3390/ijerph7041540
[23] Harper, C. (2007) The Neurotoxicity of Alcohol. Human & Experimental Toxicology, 26, 251-257.
https://doi.org/10.1177/0960327107070499
[24] Perry, E., Walker, M., Grace, J., et al. (1999) Acetylcholine in Mind: A Neurotransmitter Correlate of Consciousness? Trends in Neurosciences, 22, 273-280.
https://doi.org/10.1016/S0166-2236(98)01361-7
[25] Henn, C., et al. (1998) Stimulatory and Inhibitory Effects of Ethanol on Hippocampal Acetylcholine Release. Naunyn-Schmiedeberg’s Archives of Pharmacology, 357, 640-647.
https://doi.org/10.1007/PL00005219
[26] Solfrizzi, V., D’introno, A., Colacicco, A.M., et al. (2010) Lifestyle-Related Factors, Alcohol Consumption, and Mild Cognitive Impairment. Journal of the American Geriatrics Society, 55, 1679-1681.
https://doi.org/10.1111/j.1532-5415.2007.01313.x
[27] 王潇. 血管性认知障碍影响因素的决策树模型研究[D]: [硕士学位论文]. 青岛: 青岛大学, 2017.
[28] Topiwala, A., et al. (2017) Moderate Alcohol Consumption as Risk Factor for Adverse Brain Outcomes and Cognitive Decline: Longitudinal Cohort Study. BMJ, 357, j2353.
https://doi.org/10.1136/bmj.j2353
[29] Ilomaki, J., et al. (2015) Alcohol Consumption, Dementia and Cognitive Decline: An Overview of Systematic Reviews. Current Clinical Pharmacology, 10, 204-212.
https://doi.org/10.2174/157488471003150820145539
[30] Witkiewitz, K., et al. (2017) Clinical Validation of Reduced Alcohol Consumption after Treatment for Alcohol Dependence Using the World Health Organization Risk Drinking Levels. Alcoholism, Clinical and Experimental Research, 41, 179-186.
https://doi.org/10.1111/acer.13272
[31] Hersi, M., Irvine, B., Gupta, P., et al. (2017) Risk Factors Associated with the Onset and Progression of Alzheimer’s Disease: A Systematic Review of the Evidence. NeuroToxicology, 61, 143-187.
https://doi.org/10.1016/j.neuro.2017.03.006
[32] Obad, A., et al. (2018) Alcohol-Mediated Organ Damages: Heart and Brain. Frontiers in Pharmacology, 9, 81.
https://doi.org/10.3389/fphar.2018.00081
[33] Charlet, K. and Heinz, A. (2017) Harm Reduction—A Systematic Review on Effects of Alcohol Reduction on Physical and Mental Symptoms. Addiction Biology, 22, 1119-1159.
https://doi.org/10.1111/adb.12414
[34] Choi, D., Choi, S. and Park, S.M. (2018) Effect of Smoking Cessation on the Risk of Dementia: A Longitudinal Study. Annals of Clinical and Translational Neurology, 5, 1192-1199.
https://doi.org/10.1002/acn3.633
[35] Wingbermühle, R., et al. (2017) Smoking, APOE Genotype, and Cognitive Decline: The Rotterdam Study. Journal of Alzheimer’s Disease, 57, 1191-1195.
https://doi.org/10.3233/JAD-170063
[36] 石宇. 轻度认知障碍影响因素预测模型研究[D]: [硕士学位论文]. 青岛: 青岛大学, 2018.
[37] Jia, J., et al. (2014) The Prevalence of Mild Cognitive Impairment and Its Etiological Subtypes in Elderly Chinese. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 10, 439-447.
https://doi.org/10.1016/j.jalz.2013.09.008
[38] Reitz, C., et al. (2007) Relation between Smoking and Risk of Dementia and Alzheimer Disease: The Rotterdam Study. Neurology, 69, 998-1005.
https://doi.org/10.1212/01.wnl.0000271395.29695.9a
[39] Vu, A.T., et al. (2015) Polycyclic Aromatic Hydrocarbons in the Mainstream Smoke of Popular U.S. Cigarettes. Chemical Research in Toxicology, 28, 1616-1626.
https://doi.org/10.1021/acs.chemrestox.5b00190
[40] Lobo, V., et al. (2010) Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacognosy Reviews, 4, 118-126.
https://doi.org/10.4103/0973-7847.70902
[41] Elrod, K., Buccafusco, J.J. and Jackson, W.J. (1988) Nicotine Enhances Delayed Matching-to-Sample Performance by Primates. Life Sciences, 43, 277-287.
https://doi.org/10.1016/0024-3205(88)90318-9
[42] Newhouse, P., Kellar, K., Aisen, P., White, H., et al. (2012) Nicotine Treatment of Mild Cognitive Impairment: A 6-Month Double-Blind Pilot Clinical Trial. Neurology, 78, 91-101.
https://doi.org/10.1212/WNL.0b013e31823efcbb
[43] Neikrug, A.B. and Ancoli-Israel, S. (2010) Sleep Disorders in the Older Adult: A Mini-Review. Gerontology, 56, 181-189.
https://doi.org/10.1159/000236900
[44] Basta, M., Simos, P., Vgontzas, A., et al. (2019) Associations between Sleep Duration and Cognitive Impairment in Mild Cognitive Impairment. Journal of Sleep Research, 28, e12864.
https://doi.org/10.1111/jsr.12864
[45] Cabanel, N., Speier, C., Ller, M.J., et al. (2019) Actigraphic, But Not Subjective, Sleep Measures Are Associated with Cognitive Impairment in Memory Clinic Patients. Psychogeriatrics.
https://doi.org/10.1111/psyg.12474
[46] Maria, B., Panagiotis, S., Antonios, B., et al. (2018) Association between Insomnia Symptoms and Cognitive Impairment in the Cretan Aging Cohort. European Geriatric Medicine, 9, 697-706.
[47] Yaffe, K., Falvey, C.M. and Hoang, T. (2014) Connections between Sleep and Cognition in Older Adults. The Lancet Neurology, 13, 1017-1028.
https://doi.org/10.1016/S1474-4422(14)70172-3
[48] Wu, L., Sun, D. and Tan, Y. (2018) A Systematic Review and Dose-Response Meta-Analysis of Sleep Duration and the Occurrence of Cognitive Disorders. Sleep & Breathing, 22, 805-814.
https://doi.org/10.1007/s11325-017-1527-0
[49] Benito-Le, N.J., Bermejo-Pareja, F., Vega, S., et al. (2009) Total Daily Sleep Duration and the Risk of Dementia: A Prospective Population-Based Study. European Journal of Neurology, 16, 990-997.
https://doi.org/10.1111/j.1468-1331.2009.02618.x
[50] Conner, K., et al. (2017) Practical Applications of Physical Activity for Successful Cognitive Aging. JAAPA: Official Journal of the American Academy of Physician Assistants, 30, 30-35.
https://doi.org/10.1097/01.JAA.0000520537.00581.f1
[51] Erickson, K.I., et al. (2019) Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Medicine and Science in Sports and Exercise, 51, 1242-1251.
https://doi.org/10.1249/MSS.0000000000001936
[52] Falck, R.S., et al. (2019) Impact of Exercise Training on Physical and Cognitive Function among Older Adults: A Systematic Review and Meta-Analysis. Neurobiology of Aging, 79, 119-130.
https://doi.org/10.1016/j.neurobiolaging.2019.03.007
[53] Sofi, F., et al. (2011) Physical Activity and Risk of Cognitive Decline: A Meta-Analysis of Prospective Studies. Journal of Internal Medicine, 269, 107-117.
https://doi.org/10.1111/j.1365-2796.2010.02281.x
[54] Colcombe, S.J., Erickson, K.I., Scalf, P.E., Kim, J.S., et al. (2006) Aerobic Exercise Training Increases Brain Volume in Aging Humans. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 61, 1166-1170.
https://doi.org/10.1093/gerona/61.11.1166
[55] Erickson, K.I., et al. (2011) Exercise Training Increases Size of Hippocampus and Improves Memory. Proceedings of the National Academy of Sciences of the United States of America, 108, 3017-3022.
https://doi.org/10.1073/pnas.1015950108
[56] Nascimento, C.M., et al. (2014) Physical Exercise in MCI Elderly Promotes Reduction of Pro-Inflammatory Cytokines and Improvements on Cognition and BDNF Peripheral Levels. Current Alzheimer Research, 11, 799-805.
https://doi.org/10.2174/156720501108140910122849
[57] Ainslie, P.N., et al. (2008) Elevation in Cerebral Blood Flow Velocity with Aerobic Fitness throughout Healthy Human Ageing. The Journal of Physiology, 586, 4005-4010.
https://doi.org/10.1113/jphysiol.2008.158279
[58] Zhu, X., et al. (2017) Leisure Activities, Education, and Cognitive Impairment in Chinese Older Adults: A Population-Based Longitudinal Study. International Psychogeriatrics, 29, 727-739.
https://doi.org/10.1017/S1041610216001769
[59] Mao, C., et al. (2019) Specific Leisure Activities and Cognitive Functions among the Oldest-Old: The Chinese Longitudinal Healthy Longevity Survey. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences.
[60] Stern, Y. (2012) Cognitive Reserve in Ageing and Alzheimer’s Disease. The Lancet Neurology, 11, 1006-1012.
https://doi.org/10.1016/S1474-4422(12)70191-6
[61] Lupien, S.J., et al. (2009) Effects of Stress throughout the Lifespan on the Brain, Behaviour and Cognition. Nature Reviews Neuroscience, 10, 434-445.
https://doi.org/10.1038/nrn2639
[62] Deng, J.H., et al. (2019) Midlife Long-Hour Working and Later-Life Social Engagement Are Associated with Reduced Risks of Mild Cognitive Impairment among Community-Living Singapore Elderly. Journal of Alzheimer’s Disease, 67, 1067-1077.
https://doi.org/10.3233/JAD-180605
[63] Hughes, T.F., et al. (2013) Engagement in Social Activities and Progression from Mild to Severe Cognitive Impairment: The MYHAT Study. International Psychogeriatrics, 25, 587-595.
https://doi.org/10.1017/S1041610212002086
[64] Stern, Y. (2009) Cognitive Reserve. Neuropsychologia, 47, 2015-2028.
https://doi.org/10.1016/j.neuropsychologia.2009.03.004
[65] Landau, S.M., Marks, S.M., Mormino, E.C., et al. (2012) Association of Lifetime Cognitive Engagement and Low β-Amyloid Deposition. Archives of Neurology, 69, 623-629.
https://doi.org/10.1001/archneurol.2011.2748
[66] Solfrizzi, V., et al. (2017) Relationships of Dietary Patterns, Foods, and Micro- and Macronutrients with Alzheimer’s Disease and Late-Life Cognitive Disorders: A Systematic Review. Journal of Alzheimer’s Disease, 59, 815-849.
https://doi.org/10.3233/JAD-170248
[67] Allès, B., et al. (2012) Dietary Patterns: A Novel Approach to Examine the Link between Nutrition and Cognitive Function in Older Individuals. Nutrition Research Reviews, 25, 207-222.
https://doi.org/10.1017/S0954422412000133
[68] Wu, J., Song, X., Chen, G.C., et al. (2019) Dietary Pattern in Midlife and Cognitive Impairment in Late Life: A Prospective Study in Chinese Adults. The American Journal of Clinical Nutrition, 110, 912-920.
[69] Galbete, C., et al. (2018) Evaluating Mediterranean Diet and Risk of Chronic Disease in Cohort Studies: An Umbrella Review of Meta-Analyses. European Journal of Epidemiology, 33, 909-931.
https://doi.org/10.1007/s10654-018-0427-3
[70] Yaffe, K., Vittinghoff, E., Pletcher, M.J., Hoang, T.D., Launer, L.J., Whitmer, R., Coker, L.H. and Sidney, S. (2014) Early Adult to Midlife Cardiovascular Risk Factors and Cognitive Function. Circulation, 129, 1560-1567.
https://doi.org/10.1161/CIRCULATIONAHA.113.004798
[71] Steele, M., et al. (2007) The Molecular Basis of the Prevention of Alzheimer’s Disease through Healthy Nutrition. Experimental Gerontology, 42, 28-36.
https://doi.org/10.1016/j.exger.2006.06.002
[72] Panza, F., Frisardi, V., Seripa, D., et al. (2010) Nutraceutical Properties of Mediterranean Diet and Cognitive Decline: Possible Underlying Mechanisms. Journal of Alzheimer’s Disease, 22, 715-740.
https://doi.org/10.3233/JAD-2010-100942
[73] Jacka, N.F. (2017) Nutritional Psychiatry: Where to Next? Ebiomedicine, 17, 24-29.
https://doi.org/10.1016/j.ebiom.2017.02.020
[74] Collins, S.M., Surette, M. and Bercik, P. (2012) The Interplay be-tween the Intestinal Microbiota and the Brain. Nature Reviews Microbiology, 10, 735-742.
https://doi.org/10.1038/nrmicro2876