GaAs/InGaAs异质结构纳米线定向生长的研究进展
Research Progress on GaAs/InGaAs Heterostructure Nanowires Directional Epitaxy Growth
DOI: 10.12677/OE.2020.101002, PDF, HTML, XML, 下载: 685  浏览: 1,531  科研立项经费支持
作者: 曾丽娜, 李 林*, 李再金, 乔忠良, 曲 轶, 彭鸿雁:海南师范大学,物理与电子工程学院,海南 海口
关键词: 半导体纳米线外延生长Semiconductor Nanowires Epitaxial Growth
摘要: GaAs/InGaAs异质结构纳米线具有直接带隙、载流子迁移率高等优点,在半导体激光器、场效应晶体管、太阳能电池及红外光探测器等光电子器件领域具有广阔的应用前景,受到国内外广泛关注。目前,研究机构大多数基于纳米图形的纳米线定向生长研究,但由于图形的纳米尺寸效应,导致GaAs/InGaAs柱状纳米线生长质量变差。本文介绍了GaAs/InGaAs异质结构纳米线的性能优势和发展现状,综述了GaAs/InGaAs异质结构纳米线定向外延生长及其发光特性的研究进展,讨论了其技术难题及发展前景。
Abstract: Semiconductor nanowires (NWs) have potential applications in optoelectronic devices such as semiconductor lasers, nanowire-field effect transistors, solar cells and infrared photodetectors, and have consequently become a topic of intense research due to the direct bandgap and high carrier mobility of these materials. Most of the research institutions in the world study the directional growth of nanowires based on nano-patterned substrate. However, it is difficult to obtain high-quality GaAs/InGaAs heterostructure nanowires due to the nanosize patterned effects. We introduce the performance advantages and development status of the GaAs/InGaAs heterostructure nanowires. The research progress of directional epitaxy growth and luminescent properties of GaAs/InGaAs heterogeneous nanowires is reviewed, and its technical difficulties and development prospects are discussed.
文章引用:曾丽娜, 李林, 李再金, 乔忠良, 曲轶, 彭鸿雁. GaAs/InGaAs异质结构纳米线定向生长的研究进展[J]. 光电子, 2020, 10(1): 8-17. https://doi.org/10.12677/OE.2020.101002

1. 引言

由于半导体纳米线具有高表面–体积比特性,适合于制备光电集成器件,在新一代光电子材料与器件领域具有广阔的应用前景,成为国内外研究的热点之一,受到了研究机构密切关注和研究 [1] - [13]。其中III~V族GaAs/InGaAs纳米线因其具有窄带宽、复合中心少、载流子迁移率高、量子效率高、漏电流小和抗辐射等优点,在半导体激光器 [1] [2] [3] [4] [5] 、场效应晶体管 [6] [7] [8] [9] 、太阳能电池 [10] [11] [12] 及红外光探测器 [13] 等光电子器件领域更具有实际应用价值。然而,纳米线在外延生长过程中,由于In原子不稳定且迁移长度大于Ga原子,In原子向邻近的纳米线迁移扩散,以及GaAs/InGaAs异质结构柱状纳米线晶格失配引起的应变和位错等原因,导致纳米线生长质量变差,表面显微形貌难以得到有效控制,常出现“锥形”、“扭折”、“细丝状”等现象 [14] - [19] [23] - [28]。这些成为纳米图形GaAs/InGaAs异质结构纳米线定向生长的主要因素。近几年研发纳米图形的GaAs/InGaAs异质结构柱状纳米线定向生长已经成为国内外光电子领域研究的前沿和热点,研发机构大多数都基于纳米图形的GaAs/InGaAs异质结构柱状纳米线定向生长研究,但由于图形的纳米尺寸效应,外延生长机理复杂的原因,导致GaAs/InGaAs异质结构纳米线生长质量变差,难以获得高质量GaAs/InGaAs异质结构柱状纳米线。

2. GaAs/InGaAs纳米线国内外研究现状

由于半导体纳米线在新一代光电子材料与器件领域具有广阔的应用前景,成为国内外研究的热点之一,受到了研究机构密切关注和深入的研究。澳大利亚国立大学的Yong Kim等人 [17] 研究了利用金属有机化学气相沉积设备(MOCVD)在GaAs(111)B衬底上外延生长Au催化GaAs/InGaAs纳米线的生长质量和显微形貌特性。图1(a)为样品的扫描电子显微镜(SEM)图,实验结果表明纳米线的密度和尺寸会影响纳米线的锥形程度和表面显微形貌;图1(b)表明了不同区域GaAs/InGaAs纳米线的发光特性具有明显差异。出现这种现象的主要原因是:由于In、Ga原子在GaAs(111)B衬底上的迁移长度不同,In原子的迁移长度大于Ga原子,因此控制GaAs/InGaAs纳米线的In组分和均匀性非常困难,In组分越高难度就越大。还由于参与反应的邻近纳米线原子间的迁移和吸附等原因,造成了相邻纳米线之间的In组分不同,低密度的纳米线中In的组分很高。因而在GaAs/InGaAs纳米线的外延生长过程中,如何限制In原子在邻近纳米线之间的迁移,成为改善纳米线显微形貌和锥形程度的一个主要研究问题。

Figure 1. (a) SEM images of In0.19Ga0.81As nanowires (1.5 × 1.5 μm2); (b) PL spectra of In0.19Ga0.81As nanowires at 10 K [17]

图1. (a) In0.19Ga0.81As纳米线的SEM图(1.5 × 1.5 μm2);(b) In0.19Ga0.81As纳米线低温10 K下发光特性 [17]

德国莱比锡大学Jens Bauer等人 [18] 研究了在GaAs(111)B衬底上MOCVD生长Au催化InAs纳米线材料的生长特性。实验结果表明Au催化剂颗粒中包含Au、Ga、In原子,Ga、In原子以一定的浓度存在于Au-Ga-In合金颗粒当中,该合金的共熔温度比InAs纳米线的生长温度低,增大V/III比或升高外延生长温度,都会使Ga、In原子的表面扩散长度变大,从而进一步影响纳米线的表面显微形貌。该研究结果表明,生长温度及Au的合金颗粒的尺寸和面密度是影响InAs纳米线表面显微形貌的主要因素。在一定的外延生长条件下,使用Au催化InAs纳米线将会生成锥形(类型I)和柱形(类型II)两种类型,如图2所示,柱形(类型II)纳米线在一定条件下可转变成锥形(类型I)纳米线,而锥形(类型I)纳米线在任何条件下都无法转变成柱形(类型II)纳米线。

马来西亚工业大学D Gustiono等人 [19] 研究报道了在低温下MOCVD生长了Au催化GaAs/InGaAs纳米线,当降低生长温度为400℃时,纳米线与衬底垂直呈六棱柱形,其直径尺寸约为80~150 nm。该研究结果表明,较低的生长温度能够抑制柱形纳米线转变为锥形纳米线,但In组分会严重影响纳米线的锥形生长模式,锥形纳米线的数量会随着In组分的增加而增多,同时纳米线的锥形程度也会随着纳米线中In组分的增加而加剧。

Figure 2. (a) SEM images of InAs NW (type I and type II); (b) On the same sample exhibiting a transition from morphology type II to type I [18]

图2. (a) InAs纳米线主要柱形和锥形两种类型的SEM图;(b) 柱形纳米线在一定条件下转换成锥形纳米线的SEM图 [18]

由于InGaAs与GaAs材料之间存在较大晶格失配,纳米线样品本身存在较大“长度与直径比”,表面显微形貌难以得到有效控制,常出现“锥形”、“扭折”、“细丝状”等现象。另外,In原子不稳定且迁移长度大于Ga原子,In原子会向邻近的纳米线扩散,造成GaAs/InGaAs纳米线In组分不均匀,从而导致材料生长质量及显微形貌特性受到影响。为了改善GaAs/InGaAs纳米线的表面显微形貌,提高纳米线的生长质量,国内外的研究机构对纳米线尺寸和密度可控的定向外延生长方法进行了进一步深入研究。

3. GaAs/InGaAs纳米线定向生长研究进展

美国威斯康星大学Aloysius A. Gunawan等人 [20] 采用阳极氧化铝辅助方法刻蚀制作纳米图形GaAs衬底,研究了GaAs/InGaAs纳米线尺寸和密度可控的定向外延生长。在GaAs(111)B纳米图形衬底上沉积2 nm厚的金层,经过退火在图形GaAs(111)B衬底上形成了Au纳米颗粒后,MOCVD外延生长GaAs/InxGa1−xAs/GaAs径向异质结构(核壳结构)纳米线,样品的显微结构如图3所示,InGaAs纳米线的长度约为70~100 nm。他们的研究结果表明Au颗粒的面密度越大,InGaAs纳米线的尺寸分布偏差越小,越有利于获得密度可控的InGaAs纳米线,但其中In组分不稳定和纳米线显微形貌难以控制的问题仍然存在,这个难题没有得到解决。

Figure 3. (a) SEM images of GaAs/InxGa1−xAs/GaAs core-shell nanowires; (b) STEM images of one GaAs/InxGa1−xAs/GaAs core-shell nanowires

图3. (a) GaAs/InxGa1−xAs/GaAs核壳纳米线SEM图;(b) 单根GaAs/InxGa1−xAs/ GaAs核壳纳米线STEM图 [20]

为了解决纳米线定向外延生长难题,日本北海道大学K. Hiruma等人 [21] 研究了在无催化生长条件下,在亚微米掩模图形GaAs衬底上采用MOCVD外延生长GaAs/AlGaAs径向异质结构(核壳结构)纳米线,纳米线的生长方向与衬底方向垂直,呈现明显柱形或六棱柱形,如图4(a)所示。光致发光谱(Photoluminescence,简称PL谱)研究结果表明,核壳结构纳米线有效地增强了纳米线材料的PL强度。如图4(b)所示,比较GaAs纳米线、GaAs/AlGaAs核壳结构纳米线和GaAs衬底的PL谱可知,GaAs/AlGaAs核壳结构纳米线室温PL谱强度约为GaAs纳米线强度的20倍,这种发光特性表明了这种核壳结构的纳米线能够应用在光电子器件中。

在解决纳米线定向外延生长难题情况下,各国研究人员开展纳米线的发光特性研究,东京大学研究人员率先取得突破性成果。日本东京大学Arakawa教授研究组 [22] 进一步报道了基于分布布拉格反射镜(DBRs)纳米图形,制备一种包含In0.2Ga0.8As量子点的新型GaAs纳米线结构。利用MOCVD设备首先在GaAs(111)B衬底上外延生长Al0.65Ga0.35As/GaAs分布布拉格反射镜(DBRs),然后在DBRs上制作纳米图形,最后在DBRs纳米图形上外延生长多层In0.2Ga0.8As/GaAs量子点/纳米线,含有In0.2Ga0.8As量子点的GaAs纳米线SEM图,如图5(a)~(b)所示。从单根纳米线的扫描透射电子显微镜(scanning transmission electron microscopy, STEM)图可以看出,量子点在单根纳米线中的分布状态清晰可见,如图5(c)所示。在Al0.65Ga0.35As/GaAs DBRs上制备的纳米线结构包含了75层In0.2Ga0.8As量子点的GaAs纳米线,在低温7K条件下实现了光泵激射发光,激射光谱峰值波长约为870 nm,如图5(d)所示。

Figure 4. (a) SEM images of GaAs/AlGaAs core-shell nanowires; (b) PL of GaAs nanowires, GaAs/AlGaAs core-shell nanowires [21]

图4. (a) GaAs/AlGaAs核壳结构纳米线示意图和SEM图;(b) GaAs纳米线、GaAs/AlGaAs核壳结构纳米线的室温PL谱 [21]

Figure 5. (a) (b) SEM and (c) STEM images of GaAs NW array containing 75-stacked In0.2Ga0.8As/GaAs NW QDs, (d) PL spectra at 7 K of a single GaAs NW

图5. (a) (b) 含有In0.2Ga0.8As量子点的GaAs纳米线SEM图;(c) 单根纳米线STEM图;(d) 低温7K条件下光泵激射光谱 [22]

国内对于GaAs、InGaAs及GaAs/InGaAs异质结构柱状纳米线的研究起步较晚,成果相对较少。下面简要归纳总结一下国内在这方面的研究进展。

北京邮电大学吕晓龙等人 [23] 开展了GaAs基III-V族化合物异质结构柱状纳米线的外延生长、显微形貌和发光特性研究。在GaAs(111)B衬底上MOCVD外延生长了Au催化GaAs/InxGa1−xAs/GaAs双异质结纳米线,GaAs/In0.2Ga0.8As/GaAs双异质结纳米线的PL谱峰值波长约为1130 nm,分析了纳米线的生长温度以及In组分等外延生长参数对纳米线显微形貌的影响。如图6所示,SEM测试结果表明,随着In组分增大,纳米线的生长质量变差,出现“扭折”的现象,并伴随出现大量“细丝”状纳米线。该小组的研究结果表明InGaAs量子点的大小、密度和量子点分布状态对样品的发光特性有非常大的影响 [24] [25]。

湖南大学潘安练研究组 [26] 利用气相沉积设备(CVD)合成了非定向生长的InAs纳米线,伴随温度的升高,纳米线直径增大,纳米线直径约为100~190 nm。沉积温度在400℃~460℃的InAs纳米线SEM图,如图7所示,可以看出InAs纳米线在各个方向生长,纳米线的直径很难有限控制。

Figure 6. SEM images of GaAs/InxGa1−xAs/GaAs nanowires: (a) x = 1; (b) x = 0.2; (c) PL of GaAs/In0.2Ga0.8As/GaAs nanowires [23]

图6. GaAs/InxGa1−xAs/GaAs双异质结纳米线SEM图:(a) x = 1;(b) x = 0.2;(c) GaAs/In0.2Ga0.8As/GaAs双异质结纳米线PL谱图 [23]

Figure 7. SEM images of InAs nanowires, growth temperature: (a) 400˚C; (b) 440˚C; (c) 460˚C

图7. InAs纳米线SEM图,生长温度分别为(a) 400℃;(b) 440℃;(c) 460℃ [26]

中科院半导体所牛智川研究组 [27] 利用MBE(分子束外延)设备研究了在Si(111)衬底上外延生长的无Au催化的GaAs/AlGaAs核壳纳米线的显微形貌和发光特性。InAs量子点在纳米线上存在两种状态:一种是直接在纳米线侧壁上“附着”InAs量子点,如图8(a)所示;另一种是带有“枝状”结构的纳米线,如图8(b)所示,InAs量子点位于“枝”与“干”的交接处,InAs量子点掩埋在枝状GaAs/AlGaAs纳米线中。在低温77K下,这种带有“枝状”结构纳米线的InAs量子点PL谱强度比纳米线侧壁上“附着”的InAs量子点PL谱强度提高了约20倍,如图9所示。研究结果表明,该枝状结构纳米线可形成InAs量子点纳米微腔结构,这种纳米微腔结构能够增强InAs量子点的发光特性,有望应用于新型光电子器件中。

Figure 8. Typical SEM side-view images of sample 1 (a) and sample 2 (b) [27]

图8. 不同结构的GaAs/AlGaAs纳米线示意图和侧向SEM图:(a) 直接在纳米线侧壁上“附着”InAs量子点;(b) 带有“枝状”纳米线的InAs量子点 [27]

Figure 9. PL (blue) and micro-PL (red) spectra measured at 77 K for branched nanowire sample 2 (a) and straight nanowire sample 1 (b). The excitonic lines in solid and dotted red are the emissions from InAs QDs of separated NWs

图9. (a) 带有“枝状”纳米线的InAs量子点PL谱;(b) 直接在纳米线侧壁上“附着”InAs量子点PL谱 [27]

在GaAs(111)B衬底上MOCVD外延生长Au催化GaAs/InGaAs异质结纳米线,我们研究其外延生长参数(生长温度和Ⅴ/Ⅲ束流比)对GaAs/InGaAs异质结纳米线显微形貌的影响 [28] [29]。从GaAs/InGaAs轴向单异质结构柱状纳米线SEM测试结果可以看出,绝大部分纳米线尺寸均匀,但是也存在少量的“倾倒”、“扭折”的纳米线,如图10(a)所示。我们可以清晰看见GaAs/InGaAs异质结纳米线的界面,如图10(b)所示。国内外的研究结果表明,GaAs/InGaAs异质结构柱状纳米线定向生长及其发光特性方面的研究报道偏少,获得高质量GaAs/InGaAs异质结构柱状纳米线仍然十分困难,不利于进一步深入研究纳米线显微形貌及其发光特性。

Figure 10. (a) SEM image of GaAs/InGaAs nanowires with axial heterostructures; (b) Local enlargement for GaAs/InGaAs nanowires [29]

图10. (a) GaAs/InGaAs轴向单异质结构柱状纳米线SEM图;(b) GaAs/InGaAs纳米线SEM局部放大图 [29]

4. 结束语

目前我国GaAs/InGaAs异质结构柱状纳米线的整体研究水平仍落后于欧美日等发达国家,相关研究多集中在纳米线非定向生长、显微形貌表征以及生长机理方面,而在GaAs/InGaAs异质结构柱状纳米线定向生长及其发光特性方面的研究报道偏少。国外研究机构大多数报道是基于纳米掩模图形的纳米线定向生长研究,但由于纳米图形的尺寸效应,难以获得高质量的GaAs/InGaAs异质结构柱状纳米线。因此,如何提高GaAs/InGaAs异质结构柱状纳米线的定向外延生长质量、改善纳米线显微形貌及其发光特性,对推动和加快国内外新型光电子材料与器件的研究具有重要意义。

基金项目

2019年海南省基础与应用基础研究计划(自然科学领域)高层次人才项目(2019RC192),海南省高等学校科学研究重点项目(Hnky2020ZD-10),海南省自然科学基金(2018CXTD336, 618MS055, 618QN241)资助。

参考文献

[1] Scofield, A.C., Kim, S.-H., Shapiro, J.N., Lin, A., Liang, B., Scherer, A. and Huffaker, D.L. (2011) Bottom-Up Photonic Crystal Lasers. Nano Letters, 11, 5387-5390.
https://doi.org/10.1021/nl2030163
[2] Saxena, D., Mokkapati, S., Par-kinson, P., Jiang, N., Gao, Q., Tan, H.H. and Jagadish, C. (2013) Optically Pumped Room-Temperature GaAs Nanowire Lasers. Nature Photonics, 7, 963-968.
https://doi.org/10.1038/nphoton.2013.303
[3] Tatebayashi, J., Kako, S., Ho, J., Ota, Y., Iwamoto, S. and Arakawa, Y. (2015) Room-Temperature Lasing in a Single Nanowire with Quantum Dots. Nature Photonics, 9, 213-242.
https://doi.org/10.1038/nphoton.2015.111
[4] Kim, H., Lee, W.-J., Farrell, A.C., Morales, J.S.D., Senanayake, P., Prikhodko, S.V., Ochalski, T.J. and Huffaker, D.L. (2017) Monolithic InGaAs Nanowire Array Las-ers on Silicon-On-Insulator Operating at Room Temperature. Nano Letters, 17, 3465-3470.
https://doi.org/10.1021/acs.nanolett.7b00384
[5] Hua, B., Motohisa, J., Kobayashi, Y., Hara, S. and Fukui, T. (2009) Single GaAs/GaAsP Coaxial Core-Shell Nanowire Lasers. Nano Letters, 9, 112-116.
https://doi.org/10.1021/nl802636b
[6] Tomioka, K., Yoshimura, M. and Fukui, T. (2012) A III-V Nanowire Channel on Silicon for High-Performance Vertical Transistors. Nature, 488, 198-192.
https://doi.org/10.1038/nature11293
[7] Shen, L.-F., Yip, S.P., Yang, Z.-X., Fang, M., Hung, T.F., Pun, E.Y.B. and Ho, J.C. (2015) High-Performance Wrap-Gated InGaAs Nanowire Field-Effect Transistors with Sputtered Dielectrics. Scientific Reports, 5, Article No. 16871.
https://doi.org/10.1038/srep16871
[8] Gu, J.J., Wang, X., Wu, H., Gordon, R.G. and Ye, P.D. (2013) Variability Improvement by Interface Passivation and EOT Scaling of InGaAs Nanowire MOSFETs. IEEE Electron Device Letters, 34, 608-610.
https://doi.org/10.1109/LED.2013.2248114
[9] Tomioka, K. and Fukui, T. (2014) Current Increment of Tunnel Field-Effect Transistor Using InGaAs Nanowire/Si Heterojunction by Scaling of Channel Length. Applied Physics Letters, 104, Article ID: 073507.
https://doi.org/10.1063/1.4865921
[10] Cho, H., Toprasertpong, K., Sodabanlu, H., Watanabe, K., Sugiyama, M. and Nakano, Y. (2017) Stability and Controllability of InGaAs/GaAsP Wire-on-Well (WoW) Structure for Multi-Junction Solar Cells. Journal of Crystal Growth, 464, 86-93.
https://doi.org/10.1016/j.jcrysgro.2016.11.087
[11] Ali, L.M. and Abed, F.A. (2017) Investigation the Absorption Efficiency of GaAs/InGaAs Nanowire Solar Cells. Optical Materials, 72, 650-653.
https://doi.org/10.1016/j.optmat.2017.07.014
[12] Yao, M., Huang, N., Cong, S., Chi, C.-Y., Seyedi, M.A., Lin, Y.-T., Cao, Y., Povinelli, M.L., Dapkus, P.D. and Zhou, C. (2014) GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions. Nano Letters, 14, 3293-3303.
https://doi.org/10.1021/nl500704r
[13] Tan, H., Fan, C., Ma, L., Zhang, X., Fan, P., Yang, Y., Hu, W., Zhou, H., Zhuang, X., Zhu, X. and Pan, A. (2016) Single-Crystalline InGaAs Nanowires for Room-Temperature High-Performance Near-Infrared Photodetectors. Nano-Micro Letters, 8, 29-35.
https://doi.org/10.1007/s40820-015-0058-0
[14] Wu, J., Borg, B.M., Jacobsson, D., Dick, K.A. and Wernersson, L.-E. (2013) Control of Composition and Morphology in InGaAs Nanowires Grown by Metalorganic Vapor Phase Epitaxy. Journal of Crystal Growth, 383, 158-165.
https://doi.org/10.1016/j.jcrysgro.2013.07.038
[15] Mohseni, P.K., Behnam, A., Wood, J.D., English, C.D., Lyding, J.W., Pop, E. and Li, X. (2013) InxGa1−xAs Nanowire Growth on Graphene: Van der Waals Epitaxy Induced Phase Segrega-tion. Nano Letters, 13, 1153-1161.
https://doi.org/10.1021/nl304569d
[16] Shin, J.C., Kim, D.Y., Lee, A., Kim, H.J., Kim, J.H., Choi, W.J., Kim, H.-S. and Choi, K.J. (2013) Improving the Composition Uniformity of Au-Catalyzed InGaAs Nanowires on Silicon. Journal of Crystal Growth, 372, 15-18.
https://doi.org/10.1016/j.jcrysgro.2013.02.025
[17] Kim, Y., Joyce, H.J., Gao, Q., Tan, H.H., Jagadish, C., Paladugu, M., Zou, J. and Suvorova, A.A. (2006) Influence of Nanowire Density on the Shape and Optical Properties of Ternary In-GaAs. Nano Letters, 6, 599-604.
https://doi.org/10.1021/nl052189o
[18] Bauer, J., Gottschalch, V. and Wagner, G. (2008) The Influence of the Droplet Composition on the Vapor-Liquid-Solid Growth of InAs Nanowire on GaAs(111)B by Metal-Organic Vapor Phase Epitaxy. Journal of Applied Physics, 104, Article ID: 114315.
https://doi.org/10.1063/1.3033556
[19] Gustiono, D., Wibowo, E. and Othaman, Z. (2013) Synthesis and Characterization of InGaAs Nanowires Grown by MOCVD. Journal of Physics: Conference Series, 423, Article ID: 012047.
https://doi.org/10.1088/1742-6596/423/1/012047
[20] Gunawan, A.A., Jha, S. and Kuech, T.F. (2010) Growth of Size and Density Controlled GaAs/InxGa1−xAs/GaAs (x = 0.10) Nanowires on Anodic Alumina Membrane-Assisted Etching of Nanopatterned GaAs. Journal of Vacuum Science & Technology B, 28, 1111-1119.
https://doi.org/10.1116/1.3498753
[21] Hiruma, K., Tomioka, K., Mohan, P., Yang, L., Noborisaka, J., Hua, B., Haya-shida, A., Fujisawa, S., Hara, S., Motohisa, J. and Fukui, T. (2012) Fabrication of Axial and Radial Heterostructures for Semiconductor Nanowires by Using Selective-Area Metal-Organic Vapor-Phase Epitaxy. Journal of Nanotechnology, 2012, Article ID: 169284.
https://doi.org/10.1155/2012/169284
[22] Tatebayashi, J., Kako, S., Ho, J., Ota, Y., Iwamoto, S. and Arakawa, Y. (2017) Growth of InGaAs/GaAs Nanowire-Quantum Dots on AlGaAs/GaAs Distributed Bragg Reflectors for Laser Applications. Journal of Crystal Growth, 468, 144-148.
https://doi.org/10.1016/j.jcrysgro.2016.12.022
[23] Lü, X.-L., Zhang, X., Liu, X.-L., Yan, X., Cui, J.-G., Li, J.-S., Huang, Y.-Q. and Ren, X.-M. (2013) Growth and Characterization of GaAs/InxGa1−xAs/GaAs Axial Nanowire Heterostructures with Symmetrical Heterointerfaces. Chinese Physics B, 22, Article ID: 066101.
https://doi.org/10.1088/1674-1056/22/6/066101
[24] Yan, X., Zhang, X., Ren, X., Lv, X., Li, J., Wang, Q., Cai, S. and Hang, Y. (2012) Formation Mechanism and Optical Properties of InAs Quantum Dots on the Surface of GaAs Nanowires. Nano Letters, 12, 1851-1856.
https://doi.org/10.1021/nl204204f
[25] Yan, X., Zhang, X., Ren, X., Li, J., Cui, J., Wang, S., Fan, S., Wang, Q. and Huang, Y. (2013) Morphological and Temperature-Dependent Optical Properties of InAs Quantum Dots on GaAs Nanowires with Different InAs Coverage. Applied Physics Letters, 103, Article ID: 172102.
https://doi.org/10.1063/1.4826612
[26] Ren, P., Zhu, X., Han, J., Xu, J., Ma, L., Li, H., Zhuang, X., Zhou, H., Zhang, Q., Xia, M. and Pan, A. (2014) Synthesis and Diameter-Dependent Thermal Conductivity of In As Nanowires. Nano-Micro Letters, 6, 301-306.
https://doi.org/10.1007/s40820-014-0002-8
[27] Yu, Y., Li, M.-F., He, J.-F., He, Y.-M., Wei, Y.-J., He, Y., Zha, G.-W., Shang, X.-J., Wang, J., Wang, L.-J., Wang, G.-W., Ni, H.-Q., Lu, C.-Y. and Niu, Z.-C. (2013) Single InAs Quantum Dot Grown at the Junction of Branched Gold-Free GaAs Nanowire. Nano Letters, 13, 1399-1404.
https://doi.org/10.1021/nl304157d
[28] Yuan, H., Li, L., Li, Z., Wang, Y., Qu, Y., Ma, X. and Liu, G. (2018) Axial Heterostructure of Au-Catalyzed InGaAs/GaAs Nanowires Grown by Metal-Organic Chemical Vapor Deposition. Chemical Physics Letters, 692, 28-32.
https://doi.org/10.1016/j.cplett.2017.11.061
[29] 苑汇帛, 李林, 曾丽娜, 等. 金辅助催化方法制备GaAs和GaAs/InGaAs纳米线结构的形貌表征及生长机理研究[J]. 物理学报, 2018, 67(18): 188101.