影响鸟类婚外交配行为的生态因素
The Impact of Biological Factors on Extra-Pair Copulation in Avain
DOI: 10.12677/OJNS.2020.83022, PDF, HTML, XML, 下载: 804  浏览: 1,969 
作者: 魏 赛*:武汉大学生命科学学院,湖北 武汉
关键词: 婚外父权婚配制度生态因素Extra-Pair Paternity Mating System Ecological Factors
摘要: 单配制鸟类的婚外交配行为在自然界中十分常见,自上世纪70年代以来,这一行为的发生机制一直是生态学家研究的热点。诸多学者对导致婚外交配行为发生的因素进行了各种解释,其中不乏对生态因素的探讨。本文在过去近40年关于婚外交配相关研究的基础上,主要介绍了鸟类婚外交配的适应性原因以及纬度、气候和栖息地的复杂性等大规模生态因素对婚外交配行为的影响,并提出一些在研究中出现问题以及对未来研究的展望。
Abstract: Extra-pair copulation is quite normal among socially monogamous species in our nature, the mechanism of this behavior has been a hot area of research for ecologists since the 1970s. Many researchers try to explain the factors that cause the behavior of extra-pair copulation, a large amount of these studies focus on the ecological factors. Base on the relative researches about extra-pair copulation in the past 40 years, this paper introduced the adaption of the extra-pair paternity and the impact of latitude, climatic variability and habitat complexity on the extra-pair behavior, some problems exist during the studies and expectation in the future also referred.
文章引用:魏赛. 影响鸟类婚外交配行为的生态因素[J]. 自然科学, 2020, 8(3): 163-168. https://doi.org/10.12677/OJNS.2020.83022

1. 引言

从1987年,DNA指纹图谱的应用 [1],为家麻雀的婚外父权(EPP, extra-pair paternity)提供了明确的证据之后,关于鸟类亲权的分子研究已经进行了40多年,相关研究更是进行了数百项之多。在鸟类学中,理解自然选择和性选择的一个重要前提是理解遗传交配系统,在分子技术应用之后,几乎所有鸟类学家都认为,遗传多配制在鸟类中是普遍存在的 [2]。事实上,对迄今为止的研究的简要总结发现,在255种双亲照料的社会单配制鸟类的386个种群中,76%的物种都发现了遗传多配制,而且不同的物种之间变异度很高。在已知存在遗传多配制的种类中,在33%的巢中发现了婚外雄性的后代,占后代总数的19%。国内对于鸟类婚配制度尤其是对于鸟类婚外交配行为的研究起步相对较晚,直到近些年才有学者涉足 [3]。

2. 两性寻求EPP的利益与代价

雄性进行婚外交配的适应性利益十分明显:婚外父权可以在不提供亲代照料成本的情况下,增加雄性的繁殖成功率。但雌性进行婚外交配获得的利益仍然颇具争议 [4] [5] [6] [7]。一般认为,雌性进行EPC行为时,面临的成本包括:寻找婚外配偶耗费的精力 [8],社会配偶对后代投资的减少 [9] 以及感染性传播疾病的风险 [10]。而雌性可以获得的利益包括:婚外配偶提供额外的食物 [11],受到额外的保护免受捕食 [12],婚外配偶对后代提供额外的亲本照料 [13] 以及防止社会配偶不育带来的繁殖失败的风险 [14] (Sheldon, 1994)。然而,由于大多数物种缺乏可测量的、明显的直接利益,因此雌性可能会获得潜在的能够增强其后代的遗传构成的间接利益。尽管大家十分重视对雌性(及其后代)间接遗传利益的研究,但至今为止,这一方面仍然缺乏一致证据 [6] [15] [16] [17]。有人认为,雌性进行EPC行为是性冲突的结果,由于对雄性EPC行为的强烈选择,通过在雌雄之间EPC行为的紧密的遗传相关,雌性被迫进化出EPC行为 [18],或者是EPC行为作为一种减少雄性骚扰的机制而存在 [19]。

3. 影响EPC行为的生态因素

3.1. 纬度决定论:繁殖同步性、迁徙和气候对EPP的作用

繁殖同步性是最早提出的解释EPP跨物种变异的假说之一 [20]。Birkhead等人认为,较高的繁殖同步性将导致较低的EPP水平,这是在寻求婚外交配和亲代照顾之间进行权衡的结果,雄性个体在寻找、求偶、交配之后,缺乏足够的时间与资源再寻找其他的交配对象 [21] [22] [23]。相反有人认为同步繁殖有利于雌性同时对可育雄性进行评估,从而通过婚外交配为自己的后代选择更好的基因 [24] [25] [26]。后一种观点认为,热带地区繁殖季节较长 [27] [28],与温带地区相比,热带鸟类繁殖时间更不同步,应该有更低的EPP,所以纬度可以解释EPP的变异。Spottiswoode与Møller的分析表明,绝对纬度与物种间的EPP呈正相关(绝对纬度),因为使用与赤道的绝对距离预测同步性 [29]。然而,许多其他因素被认为与纬度有关,如环境因子,包括初级生产力,气候,生活史特征如年成体存活率和迁徙等 [30] [31] [32]。迁徙可能会影响鸟类的繁殖物候,受到抵达时间的影响,候鸟可能会仓促地建立社会配偶关系,选择配偶的能力也会受到影响。的确,迁徙物种相对来说在较高纬度地区繁殖,与留鸟相比也确实有更高的EPP,因此观察到的EPP与纬度之间的关系可能是迁徙的结果而不是繁殖同步性造成的 [29]。Botero和Rubenstein的研究表示,在气温年内变化较大的环境中繁殖的物种更有可能有婚外后代。他们的解释是,EPP允许更大的生殖灵活性,允许个体在不同的生态条件下选择最佳的伴侣 [33]。然而,与迁徙一样,年内温度也随纬度变化,因此,EPP的种间变异与温度季节性之间的观测模式也可以用纬度来解释。

3.2. 生境复杂性

EPP可以通过不同的行为机制产生,例如通过雌性在自己的领地外寻找婚外配偶 [12] [34] 或其他雄性闯入另一繁殖对的领地寻求婚外交配 [35] [36]。我们推测婚外交配行为的可能驱动因素时,有一个十分重要的事实是,关于雄性和雌性的婚外交配行为的实际数据是非常少的(我们对鸟类遗传多配制的认知大多数来自于婚外交配留下的受精卵中的分子证据 [37])。在交配过程中,雄性和雌性在一起的时间和空间可能会影响EPP,这可能受到栖息地复杂性的影响。婚外行为的隐密性,复杂的生境可能会促进婚外交配行为,这种环境中,雄性配偶的视线受阻,雌性的偷情行为不容易被发现 [35]。并且在这种生境中,雌性也更容易摆脱配偶的配对保护 [38],即在雌性产卵期间,雄性配偶会尽量保护雌性配偶,以确保雌性所怀的是自己的后代,这种行为在与雄性父权分享呈正相关 [39]。此外,在复杂的生境中,入侵的雄性更不容易被发现,婚外行为往往发生在隐蔽的环境中 [40]。然而,种内分析并没有发现生境结构影响EPP的证据 [41] [42]。虽然一项关于蓝脚鲣鸟的研究显示,障碍物的存在与EPP有关,这表明在集群繁殖时,雄鸟的行动受到障碍物的限制难以接近雌鸟 [43]。最近的一项比较研究也未能找到支持生境复杂性作用的证据,该研究使用了五种不同的植被层对社会单配制物种进行了测试 [44]。虽这项研究解释了系统发生,但植被层理通常与系统发生混淆不清,考虑到所有物种都有可能混淆了两者。例如,海鸟等物种的EPP通常较低,它们通常也会在植被稀少的地区筑巢,比如海洋小岛。因此,有人预测,芦苇、猫尾和莎草之类植被将促进EPP,因为这些类型的浓密植被在非常短的距离内阻碍了视线。然而,关于社会单配制的雀形目的比较研究表明,在芦苇型植被中栖息的物种并不比在森林型植被中栖息的物种具有更高的EPP。因此,尽管婚外交配行为具有隐秘的性质,而且有迹象表明雌性会尽量避免被配偶发现,但迄今为止还没有证据表明植被和栖息地类型在决定物种间EPP水平方面发挥了作用。此外,物种间行为的差异可能使植被类型变得并不那么重要。例如,燕科的觅食方式是在空中捕食小型昆虫,这种行为方式可能会阻碍雄性对产卵期雌性配偶的持续监控。同样,雌性华丽细尾鹩莺也会在黎明前进行婚外交配 [44]。新的鸟类追踪技术可能会对这种行为的进一步存在提供更深入的了解。例如,最近一项关于黄胸燕的研究(Icterina virens)发现,在繁殖期,雌性在产卵期间会在夜间进行域外入侵 [45]。因为黑暗本身就对行为具有十分显著的遮掩效果,这样的夜间行为可能使栖息地的复杂性对EPP来说并没有那么重要。

4. 总结

综上所述,在鸟类物种和种群中,EPP水平存在相当大的差异,并且目前很难找到这种差异背后的一般解释,事实上关于EPP变异,很难获得一个一般性的解释 [6]。尽管EPP种间变异模式缺乏大规模的驱动因素,但如果从正确的角度进行研究,相信很大一部分变异仍然可以得到解释。婚外交配对雌性的直接利益可能被低估了,特别是因为很难检验生育保险假说。可育收益可能是雌性婚外交配行为的一个普遍驱动因素,并可能由于EPP的成本与收益的变异造成一定的偏差,使雌性的婚外交配行为在所有物种中维持在一个相对恒定的水平,一个主要的问题是,我们对婚外交配与婚外受精之间的关系了解甚少。也许,新兴的动物追踪技术可以帮助我们更好地判断雌性在多大程度上进行了婚外交配。关于雌性潜在选择领域的新研究也可能为我们了解多次交配和婚外受精的程度提供重要的信息。为了保证卵的受精率,婚外交配可能十分必要,但由于这种行为而付出的某些高昂直接或间接的代价(如机会成本、亲代照顾减少的成本),限制了婚外交配行为的发生。在合作繁殖的物种中,这些成本可能会降低,因为帮助者的存在可以提供额外的劳动力,抵消了由于婚外交配带来的成本,可能导致EPP水平在合作繁殖鸟类中相对较高。另外,在一个大尺度上来说,全球区域的研究存在明显的偏差,大多数有关EPP的研究主要集中在欧洲中部和北美东部地区,南美和东南亚热带雨林这些鸟类多样性最高的区域,数据却相对缺乏,希望这些偏见能随着进一步研究的计划和进行而得到解决,并且新的数据能帮助人们对鸟类行为、生态学和生殖生理学之间的复杂而有趣的现象提供新的见解。鸟类的婚外交配行为将仍然是我们试图了解性选择、鸟类基本行为生态学以及种群遗传动态和结构的一个重要组成部分。

参考文献

[1] Burke, T. and Bruford, M.W. (1987) DNA Fingerprinting in Birds. Nature, 327, 149-152.
https://doi.org/10.1038/327149a0
[2] Griffith, S.C., Owens, I.P.F. and Thuman, K.A. (2002) Extra Pair Pa-ternity in Birds: A Review of Interspecific Variation and Adaptive Function. Molecular Ecology, 11, 2195-2212.
https://doi.org/10.1046/j.1365-294X.2002.01613.x
[3] 王琛. 青藏高原地山雀的社会组织和配偶选择[D]: [博士学位论文]. 武汉: 武汉大学生命科学学院, 2010.
[4] Arct, A., Drobniak, S.M. and Cichoń, M. (2015) Genetic Similarity between Mates Predicts Extrapair Paternity—A Meta-Analysis of Bird Studies. Behavioral Ecology, 26, 959-968.
https://doi.org/10.1093/beheco/arv004
[5] Drobniak, S.M., Arct, A. and Cichoń, M. (2015) Extrapair Paternity and Genetic Similarity—We Are Not Quite There Yet: A Response to Comments on Arct et al. Behavioral Ecology, 26, 973-974.
https://doi.org/10.1093/beheco/arv098
[6] Forstmeier, W., Nakagawa, S., Griffith, S.C. and Kempenaers, B. (2014) Female Extra-Pair Mating: Adaptation or Genetic Constraint? Trends in Ecology and Evolution, 29, 456-464.
https://doi.org/10.1016/j.tree.2014.05.005
[7] Nakagawa, S., Schroeder, J. and Burke, T. (2015) Sugar-Free Extrapair Mating: A Comment on Arct et al. Behavioral Ecology, 26, 971-972.
https://doi.org/10.1093/beheco/arv041
[8] Dunn, P.O. and Whittingham, L.A. (2006) Search Costs Influence the Spatial Distribution, But Not the Level, of Extra-Pair Mating in Tree Swallows. Behavioral Ecology and Socio-biology, 61, 449-454.
https://doi.org/10.1007/s00265-006-0272-3
[9] Matysioková, B. and Remeš, V. (2013) Faithful Females Receive More Help: The Extent of Male Parental Care during Incubation in Relation to Extra-Pair Paternity in Songbirds. Journal of Evolutionary Biology, 26, 155-162.
https://doi.org/10.1111/jeb.12039
[10] Poiani, A. and Wilks, C. (2000) Sexually Transmitted Diseases: A Possible Cost of Promiscuity in Birds? The Auk, 117, 1061-1065.
https://doi.org/10.1093/auk/117.4.1061
[11] Tryjanowski, P. and Hromada, M. (2005) Do Males of the Great Grey Shrike, Lanius Excubitor, Trade Food for Extrapair Copulations? Animal Behaviour, 69, 529-533.
https://doi.org/10.1016/j.anbehav.2004.06.009
[12] Gray, E.M. (1997) Female Red-Winged Blackbirds Ac-crue Material Benefits from Copulating with Extra-Pair Males. Animal Behaviour, 53, 625-639.
https://doi.org/10.1006/anbe.1996.0336
[13] Townsend, A.K., Clark, A.B. and McGowan, K.J. (2010) Direct Benefits and Genetic Costs of Extrapair Paternity for Female American Crows (Corvus brachyrhynchos). The American Naturalist, 175, E1-E9.
https://doi.org/10.1086/648553
[14] Sheldon, B.C. (1994) Male Phenotype, Fertility, and the Pursuit of Ex-tra-Pair Copulations by Female Birds. Proceedings of the Royal Society of London Series B: Biological Sciences, 257, 25-30.
https://doi.org/10.1098/rspb.1994.0089
[15] Akçay, E. and Roughgarden, J. (2007) Extra-Pair Paternity in Birds: Review of the Genetic Benefits. Evolutionary Ecology Research, 9, 855-868.
[16] Arnqvist, G. and Kirkpatrick, M. (2005) The Evolution of Infidelity in Socially Monogamous Passerines: The Strength of Direct and Indirect Selection on Extrapair Copulation Behavior in Females. American Naturalist, 165, S26-S37.
https://doi.org/10.1086/429350
[17] Hsu, Y.-H., Schroeder, J., Winney, I., Burke, T. and Nakagawa, S. (2015) Are Extra-Pair Males Different from Cuckolded Males? A Case Study and a Meta-Analytic Examination. Molecular Ecology, 24, 1558-1571.
https://doi.org/10.1111/mec.13124
[18] Forstmeier, W., Martin, K., Bolund, E., Schielzeth, H. and Kempenaers, B. (2011) Female Extrapair Mating Behavior Can Evolve via Indirect Selection on Males. Proceedings of the Na-tional Academy of Sciences, 108, 10608-10613.
https://doi.org/10.1073/pnas.1103195108
[19] Reid, J.M. and Wolak, M.E. (2018) Is There Indirect Selection on Female Extra-Pair Reproduction through Cross-Sex Genetic Correlations with Male Reproductive Fitness? Evo-lution Letters, 2, 159-168.
https://doi.org/10.1002/evl3.56
[20] Stutchbury, B.J.M. and Morton, E.S. (1995) The Effect of Breeding Synchrony on Extra-Pair Mating Systems in Songbirds. Behaviour, 132, 675-690.
https://doi.org/10.1163/156853995X00081
[21] Birkhead, T.R. and Biggins, J.D. (1987) Reproductive Syn-chrony and Extra-Pair Copulations in Birds. Ethology, 74, 320-334.
https://doi.org/10.1111/j.1439-0310.1987.tb00942.x
[22] Ims, R.A. (1990) The Ecology and Evolution of Reproductive Synchrony. Trends in Ecology and Evolution, 5, 135-140.
https://doi.org/10.1016/0169-5347(90)90218-3
[23] Westneat, D.F., Sherman, P.W. and Morton, M.L. (1990) The Ecology and Evolution of Extra-Pair Copulations in Birds. In: Power, D.M., Ed., Current Ortnithology, Vol. 7, Plenum Press, New York, 331-369.
[24] Lifjeld, J.T., Slagsvold, T. and Ellegren, H. (1997) Experimental Mate Switching in Pied Flycatchers: Male Copulatory Access and Fertilization Success. Animal Behaviour, 53, 1225-1232.
https://doi.org/10.1006/anbe.1996.0430
[25] Stutchbury, B.J.M. (1998) Breeding Synchrony Best Explains Variation in Extra-Pair Mating System among Avian Species. Behavioral Ecology and Sociobiology, 43, 221-222.
https://doi.org/10.1007/s002650050485
[26] Chuang, H.C., Webster, M.S. and Holmes, R.T. (1999) Extrapair Paternity and Local Synchrony in the Black-Throated Blue Warbler. The Auk, 116, 726-736.
https://doi.org/10.2307/4089333
[27] MacArthur, R.H. (1964) Environmental Factors Affecting Bird Species Diversity. American Naturalist, 98, 387-397.
https://doi.org/10.1086/282334
[28] Englert Duursma, D., Gallagher, R.V. and Griffith, S.C. (2017) Charac-terizing Opportunistic Breeding at a Continental Scale Using All Available Sources of Phenological Data: An As-sessment of 337 Species across the Australian Continent. The Auk, 134, 509-519.
https://doi.org/10.1642/AUK-16-243.1
[29] Spottiswoode, C. and Møller, A.P. (2004) Extrapair Paternity, Migration, and Breeding Synchrony in Birds. Behavioral Ecology, 15, 41-57.
https://doi.org/10.1093/beheco/arg100
[30] Cardillo, M. (2002) The Life-History Basis of Latitudinal Diversity Gradients: How Do Species Traits Vary from the Poles to the Equator? Journal of Animal Ecology, 71, 79-87.
https://doi.org/10.1046/j.0021-8790.2001.00577.x
[31] Gillman, L.N., Wright, S.D., Cusens, J., McBride, P.D., Malhi, Y. and Whittaker, R.J. (2015) Latitude, Productivity and Species Richness: Latitude and Productivity. Global Ecology and Biogeography, 24, 107-117.
https://doi.org/10.1111/geb.12245
[32] Muñoz, A.P., Kéry, M., Martins, P.V. and Ferraz, G. (2018) Age Ef-fects on Survival of Amazon Forest Birds and the Latitudinal Gradient in Bird Survival. The Auk, 135, 299-313.
https://doi.org/10.1642/AUK-17-91.1
[33] Botero, C.A. and Rubenstein, D.R. (2012) Fluctuating Environ-ments, Sexual Selection and the Evolution of Flexible Mate Choice in Birds. PLoS ONE, 7, e32311.
https://doi.org/10.1371/journal.pone.0032311
[34] Michl, G., Toeroek, J., Griffith, S.C. and Sheldon, B.C. (2002) Experimental Analysis of Sperm Competition Mechanisms in a Wild Bird Population. Proceedings of the National Academy of Sciences of the United States of America, 99, 5466-5470.
https://doi.org/10.1073/pnas.082036699
[35] Sherman, P.W. and Morton, M.L. (1988) Extra-Pair Fertilizations in Mountain White-Crowned Sparrows. Behavioral Ecology and Sociobiology, 22, 413-420.
https://doi.org/10.1007/BF00294979
[36] Westneat, D.F. (1994) To Guard Mates or Go Forage-Conflicting Demands Affect the Paternity of Male Red-Winged Blackbirds. American Naturalist, 144, 343-354.
https://doi.org/10.1086/285679
[37] Griffith, S.C. (2007) The Evolution of Infidelity in Socially Monogamous Passerines: Neglected Components of Direct and Indirect Selection. The American Naturalist, 169, 274-281.
https://doi.org/10.1086/510601
[38] Mays, H.L. and Ritchison, G. (2004) The Effect of Vegetation Density on Male Mate Guarding and Extra-Territorial Forays in the Yellow-Breasted Chat (Icteria virens). Naturwissenschaften, 91, 195-198.
https://doi.org/10.1007/s00114-004-0510-3
[39] Harts, A.M.F., Booksmythe, I. and Jennions, M.D. (2016) Mate Guarding and Frequent Copulation in Birds: A Meta-Analysis of Their Relationship to Paternity and Male Phenotype. Evolution, 70, 2789-2808.
https://doi.org/10.1111/evo.13081
[40] Tryjanowski, P., Antczak, M. and Hromada, M. (2007) More Secluded Places for Extra-Pair Copulations in the Great Grey Shrike Lanius excubitor. Behaviour, 144, 23-31.
https://doi.org/10.1163/156853907779947436
[41] Ramos, A.G., Nunziata, S.O., Lance, S.L., Rodríguez, C., Faircloth, B.C., Gowaty, P.A. and Drummond, H. (2014) Habitat Structure and Colony Structure Constrain Extrapair Paternity in a Colonial Bird. Animal Behaviour, 95, 121-127.
https://doi.org/10.1016/j.anbehav.2014.07.003
[42] Westneat, D.F. and Mays, H.L. (2005) Tests of Spatial and Temporal Factors Influencing Extra-Pair Paternity in Red-Winged Blackbirds: Factors Affecting EPP. Molecular Ecology, 14, 2155-2167.
https://doi.org/10.1111/j.1365-294X.2005.02562.x
[43] Biagolini, C., Westneat, D.F. and Francisco, M.R. (2017) Does Habitat Structural Complexity Influence the Frequency of Extra-Pair Paternity in Birds? Behavioral Ecology and Sociobiology, 71, Article No. 101.
https://doi.org/10.1007/s00265-017-2329-x
[44] Double, M. and Cockburn, A. (2000) Pre-Dawn Infidelity: Females Control Extra-Pair Mating in Superb Fairy-Wrens. Proceedings of the Royal Society of London Series B: Biological Sciences, 267, 465-470.
https://doi.org/10.1098/rspb.2000.1023
[45] Ward, M.P., Alessi, M., Benson, T.J. and Chiavacci, S.J. (2014) The Active Nightlife of Diurnal Birds: Extraterritorial Forays and Nocturnal Activity Patterns. Animal Behaviour, 88, 175-184.
https://doi.org/10.1016/j.anbehav.2013.11.024