上皮角蛋白在正常组织和肿瘤中的功能及检测应用
The Functions and Applications of Epithelial Keratins in Normal Tissues and Tumors
DOI: 10.12677/PI.2020.93017, PDF, HTML, XML, 下载: 642  浏览: 1,960 
作者: 刘福洲, 刘 煜, 吴 洁*:中国药科大学生命科学与技术学院,江苏 南京
关键词: 角蛋白生物学功能肿瘤临床应用Keratins Biological Function Tumor Clinical Application
摘要: 角蛋白是细胞中间丝的主要组成成分。角蛋白可保护上皮细胞免受机械力及非机械力导致的损伤,包括维持细胞完整性,调节细胞生长和迁移以及防止细胞凋亡。在上皮细胞的恶性转化中角蛋白表达模式通常保持不变,所以角蛋白在临床多作为癌症标志物对癌症分型、分级等进行检测和鉴定。本文主要综述了近年来角蛋白的分子生物学、生物学功能研究及其作为肿瘤标志物的临床应用。
Abstract: Keratins are the main component of the intermediate filaments. Keratins protect epithelial cells from damage caused by mechanical and non-mechanical forces, including maintaining cell integrity, regulating cell growth and migration, and preventing apoptosis. The expression pattern of keratins is usually unchanged in the malignant transformation of epithelial cells, so keratins are used as cancer markers frequently to detect and identify cancer types and grades. This article mainly reviews the molecular biology and biological functions of keratins and the clinical applications of keratins as tumor markers in recent years.
文章引用:刘福洲, 刘煜, 吴洁. 上皮角蛋白在正常组织和肿瘤中的功能及检测应用[J]. 药物资讯, 2020, 9(3): 117-125. https://doi.org/10.12677/PI.2020.93017

1. 角蛋白概述

所有哺乳动物细胞均含有复杂的胞质内细胞骨架,细胞骨架由含肌动蛋白的微丝,含微管蛋白的微管和中间丝(Intermediate filament, IF)三个主要结构单元和相关蛋白构成。IFs有六种不同的类型,I型IF为酸性角蛋白(Keratins),II型IF为碱性角蛋白,III型IF包括波形蛋白、结蛋白和神经胶质纤维酸性蛋白,IV型IF组装神经丝,V型IF是核纤层蛋白,VI型IF是巢蛋白 [1]。目前共鉴定出54种角蛋白基因,根据表达情况不同可分为三类,上皮角蛋白基因,毛发角蛋白基因和角蛋白假基因 [2]。如前所述根据等电点不同将角蛋白分为酸碱两类,I型酸性角蛋白的等电点为4.9~5.4,包括17种上皮细胞角蛋白K9、K10、K12~K20、K23~K28和11种毛发角蛋白K31、K32、K33a、K33b、K34~K40;II型碱性角蛋白的等电点为6.5~8.5,包括20种上皮角蛋白K1~K5、K6a、K6b、K6c、K7、K8、K71~K80和6种毛发角蛋白K81~K86 [3] [4]。

所有角蛋白蛋白链具有类似的结构(图1),由中心α-螺旋杆结构域和位于其N-末端和C-末端的可变末端结构域组成 [5]。α-螺旋区长度相对保守,包含310~350个氨基酸,两侧非螺旋的头和尾结构域长度和组成差异很大。α-螺旋结构域含有四个七肽重复序列片段(a-b-c-d-e-f-g) n,其中a,b多为疏水性基团,且在该序列片段中带电残基具有正负电荷交替分布的周期性 [6]。角蛋白会以酸碱配对的方式互相盘绕形成螺旋状的I~II型异二聚体,两个二聚体反向平行交错排列形成四聚体,四聚体首尾相连形成原丝,一对原丝横向结合形成原纤丝,四个原纤丝形成直径10 nm的圆柱形IF [1] [7]。该直径介于微丝(6 nm)和微管(23 nm)之间,所以命名为Intermediate filament,即中间丝。

注:1A,1B,2A,2B是四个七肽重复序列片段,L1,L12,L2是三个链接区。头尾由三个亚结构域组成,E为端亚域(end subdomain)、V为可变亚域(variable subdomain)、H为同源亚域(homologous subdomain)。

Figure 1. Schematic representation of the tripartite domain structure shared by keratins

图1. 角蛋白结构示意图

2. 角蛋白生物学功能

2.1. 稳定细胞结构,维持细胞机械强度

在细胞内,10 nm的IF被组织成从核表面到质膜的复杂的超分子网络。角蛋白网络是相对静态的实体,将核膜、质膜以及桥粒等细胞间或细胞与基质的黏附结构相连,支撑、保护细胞核并为细胞提供机械强度,确保在机械力和非机械力条件下细胞及组织的完整性 [8] [9]。在早期研究中肌动蛋白被认为是细胞微机械特性的主要决定因素,但对缺乏整个角蛋白细胞骨架的角质形成细胞的分析首次确定了角蛋白在确定细胞硬度中的主要作用 [10] [11]。角蛋白细丝组件显着促进了体内几种上皮细胞和组织所显示的机械弹性 [11]。天然突变会破坏角蛋白丝的结构,进而破坏角蛋白网络,从而导致细胞脆弱 [8]。角蛋白通过与网格蛋白,BPAG1和桥粒原蛋白的直接相互作用来稳定这些粘附位点,维持细胞与基质和细胞之间的粘附 [12]。角质形成细胞中缺乏角蛋白会导致血凝素重新分布,并使半纤体不稳定,角质形成细胞迁移和侵袭能力增强 [11] [13]。K8/18耗竭后,几种上皮癌细胞系显示出集体迁移和侵袭性增强 [14]。对于内在机制,有研究发现角蛋白通过以PKC-a依赖性方式调节桥粒斑磷酸化来稳定桥粒 [15],在另一实验中发现角蛋白K1或K10缺陷的小鼠表现出桥粒蛋白表达降低且桥粒变小 [16]。

2.2. 影响细胞的增殖、运动等动态变化

角蛋白网络也是高度动态的结构,角蛋白网络的动态重排是上皮细胞进行细胞迁移,分化,极化和伤口愈合等细胞过程所必需的。角蛋白丝会根据细胞周期,细胞运动和分化的不同阶段不断更新和重塑 [9]。角蛋白网络的组装也是高度动态的,组装完成的角蛋白网络还会受一系列因素影响展现出构型的快速变化。

最主要的影响因素是翻译后修饰(Post-translation modifications, PTMs),PTMs能够影响角蛋白网络的组装和拆卸及其整体组织,包括与细胞接头和相关蛋白的相互作用。角蛋白受多种PTMs调控,包括磷酸化,O-糖基化,泛素化,乙酰化,磺酰化,SUMO酰化和氨基转移 [9] [17]。磷酸化是研究最广泛的PTM,大部分磷酸化位点位于头尾结构域内的丝氨酸残基,α螺旋结构域中的酪氨酸残基也是角蛋白的磷酸化位点 [9]。多种酶参与角蛋白的磷酸化,包括p38丝裂原激活蛋白激酶(MAPK),cAMP依赖性蛋白激酶(PKA),Ca2+依赖性蛋白激酶(PKC),钙调蛋白依赖性蛋白激酶II (CAMK II),丝氨酸/苏氨酸激酶(AKT),p90核糖体蛋白S6激酶1 (RSK1),酪蛋白激酶Iα (CK-Iα),Src激酶等 [18]。角蛋白磷酸化的一个主要功能是增强角蛋白溶解度,触发角蛋白丝网络的重组。Holle等人一篇描述IF重组动态影响癌细胞排列和迁移的研究证明角蛋白磷酸化可影响细胞在柱底物上的迁移,角蛋白细胞骨架的重组能够增加细胞运动性,从而使细胞能够更快、更直接地迁移并响应外部刺激的方向 [19]。此外,角蛋白的PTMs会影响角蛋白组织及其蛋白质相互作用,从而影响细胞的应激反应,粘附和细胞迁移。

除PTMs外,角蛋白与其他蛋白质的相互作用也能调节蛋白质网络的重排 [20]。斑蛋白家族的成员网格蛋白、Epiplakin等是角蛋白丝的主要调节剂之一。网格蛋白是半桥粒的组成部分,它可以连接并组织角蛋白,微丝和微管 [21]。网格蛋白的缺失会导致角蛋白网络重组 [22]。在受伤的表皮中,Epiplakin主要与K17相互作用,这表明在伤口愈合期间Epiplakin可能有助于组织角蛋白网络 [23]。除此之外FAM83H、酪蛋白激酶1α (CK-1α)、伴侣蛋白Hsp27等小分子热激蛋白也可以通过蛋白质相互作用影响蛋白质网络的动态组织 [24] [25]。

2.3. 角蛋白的非经典生物学功能

其一,角蛋白从多个角度参与细胞凋亡过程。在体外和体内实验中K8-K18角蛋白对的表达均能通过减弱特定的促凋亡信号从而保护上皮细胞,包括TNF-α和Fas [8]。由于角蛋白是上皮细胞中非常丰富的蛋白质,因此它们很容易在磷酸化依赖性应激反应中充当有效的“诱饵”,最终使细胞和组织避免损伤 [26]。通过突变两个天冬氨酸裂解位点来抑制半胱天冬酶介导的K18裂解,从而抑制K8-K18在凋亡过程中进行典型的重组,会促进肝细胞的坏死 [27]。CD205是树突细胞上具有抗原呈递功能的内吞受体,能以pH依赖方式识别凋亡细胞和坏死细胞;有研究证明K1,K9,K10和K2是CD205的配体,通过该相互作用可以将角蛋白作为凋亡和坏死细胞的标记以在酸性pH下鉴定死细胞 [28]。其二,角蛋白还参与上皮组织的生长调节。在肝细胞和卵母细胞中观察到K8-K18与14-3-3蛋白的磷酸化依赖性相互作用能调节细胞进程的周期 [8]。在皮肤伤口边缘的角质形成细胞及其原代培养细胞中发现K17与14-3-3蛋白的相互作用会调节蛋白质的合成 [29]。其三,角蛋白参与免疫反应和炎症介质的表达与激活。K17在几种炎症和免疫反应基因的表达中起着重要作用,这涉及K17与异质核糖核蛋白(hnRNP K)和自身免疫调节剂(AIRE)的相互作用 [30] [31]。Toivola等证明了衰老的雄性小鼠肝细胞内K8或K18的缺失会促进体内抗线粒体自身抗体的形成 [32]。Chan等的研究发现泛素-蛋白酶体加工导致的K6a重组是皮肤和粘膜上皮细胞的直接抗菌反应 [33]。

其四,角蛋白还参与上皮细胞迁移的调节。这一作用将其对细胞力学的影响与调节关键信号传导因子的能力相结合。K6是一种伤口诱导的角蛋白,它通过直接与Src酪氨酸蛋白激酶相互作用并调节其影响细胞基质粘附的能力而在角质形成细胞迁移中起重要作用 [34]。最后,角蛋白对于维持体内稳态也有重要作用。Helenius等人发现K8基因敲除小鼠的结肠内HMGCS2 (线粒体羟甲基戊二酰辅酶A合酶2)下调明显,结肠细胞能量代谢关键轴的调控被破坏,表明角蛋白对于结肠代谢稳态具有重要作用 [35]。另一项实验研究了角蛋白在胰腺及血糖控制中的潜在作用,在链脲佐菌素(STZ)诱导的糖尿病和非肥胖糖尿病小鼠中,K8缺失导致空腹血糖水平降低,葡萄糖耐量和胰岛素敏感性增加,葡萄糖刺激的胰岛素分泌减少以及胰腺胰岛素含量降低;在K8敲除的β细胞中,葡萄糖转运蛋白2 (Glut2)定位和胰岛素囊泡形态被破坏 [36]。Kerns等的研究表明K16可能通过核因子E2相关因子2 (Nrf2)和抗氧化剂谷胱甘肽之间的正反馈回路调节Nrf2活性,从而对氧化应激作出反应 [37]。

3. 角蛋白在正常组织和癌症中表达

角蛋白基因的表达受发育调节。在胚胎发育过程中角蛋白并不普遍表达,而在上皮细胞发育的特定阶段会表达不同的特异性角蛋白 [6]。如前文所述角蛋白通常形成I~II型异二聚体,而不同类型的上皮细胞表达的角蛋白对具有特定的组合 [1]。K8-K18在许多简单的上皮细胞中构成了主要的角蛋白对。K5-K14在分层的鳞状上皮细胞中形成主要的角蛋白对,在复杂上皮和腺上皮组织的基底和肌上皮细胞中也有表达 [38]。上皮细胞可以通过其角蛋白成分进行分类。在肿瘤进展和转移过程中,癌细胞通常维持其角蛋白表达的特定模式。原发性肿瘤、已扩散的细胞和继发性转移可通过其上皮角蛋白表达进行鉴定,从而可以区分不同类型的肿瘤。由于角蛋白的持续表达,包括K5,K7,K8,K18,K19和K20在内的多种角蛋白在癌症的免疫组织化学肿瘤诊断中具有重要意义,特别是在精确分类和亚型分析方面。表1列出了不同组织及对应肿瘤中主要角蛋白的表达情况。

Table 1. Keratin expression in normal tissues and cancers

表1. 角蛋白在不同组织及肿瘤中的表达

注:此表根据参考文献 [39] 绘制。

4. 角蛋白作为肿瘤标志物的应用

如前文所述,角蛋白在不同器官不同类型的癌症以及癌症的不同进展时期中有特征性表达,基于此特点角蛋白已作为多种肿瘤的循环肿瘤细胞(CTC)的鉴定标志物被应用于临床,包括乳腺癌 [40],胰腺癌 [41],前列腺癌 [42] 等。在某些癌症中角蛋白表达模式足够特殊,能够用来鉴定该类型的癌症;但更常见的情况是一种特定的角蛋白表达模式会出现在多种癌症中,此时就需要更多的考虑肿瘤分化、分级以及肿瘤间和肿瘤内异质性的影响,并结合其他免疫组化肿瘤标志物数据做出判断 [43]。目前应用比较广泛的是使用针对K8,K18和K19的特异性抗体进行免疫细胞化学检测从而鉴定癌细胞 [44] [45]。除此之外针对K7,K20,K14和K5/6的单克隆抗体也具有很高的鉴定价值,Chu等详细综述了K5/6,K7,K8/18,K14,K19和K20在不同肿瘤内的表达差异 [45]。K14、K5和K20的分子表达模式可作为晚期膀胱肿瘤分层和预后的CTCs标志物 [46]。在对非小细胞肺癌CTCs的分析中,将角蛋白表达分析与HER3和EGFR表达分析结合,能对肿瘤的脑转移做出判断,同时对其他脑转移患者的分析也具有良好的适用性 [47]。CD44+CK+的CTCs及DTCs (骨髓弥散性肿瘤细胞)是胃癌患者独立的预后因素 [48]。

角蛋白还可作为血清肿瘤标志物用于癌症检测。血液中一些蛋白复合物包含有未完全降解的角蛋白片段,并且已经在癌症患者的血清中发现了衍生自K8,K18和K19的肽。TPA,TPS和CYFRA 21-1是应用于血液样本的三种最常用的角蛋白测试系统。TPA (Tissue Polypeptide Antigen,组织多肽抗原)是一种广谱测试,可检测角蛋白K8,K18和K19,而TPS (Tissue Polypeptide Specific,组织多肽特异性抗原)和CYFRA21-1 (cytokeratin 19 fragment,血清K19片段)分别用于检测K18和K19 [40]。TPA和TPS已在乳腺癌,结肠直肠癌,卵巢癌,肺癌等多种类型的癌症中用作血清学标记物 [49] [50]。K18可作为非小细胞肺癌与前列腺癌的预后标志物 [51]。晚期胃癌经过化疗14天后血清K18片段M30在能作为治疗效果的独立预测因子;M30的水平与转移和淋巴结受累相关,在化疗期间显著降低,接受治疗14天后应答者M30中位数水平由759 U/L降低至90 U/L,非应答者M30中位数水平由2257 U/L降低至421 U/L,P值由治疗前0.102变为治疗后0.002 [52]。CYFRA21-1主要应用于肺癌和头颈癌。一篇Meta分析证明了CYFRA21-1在非小细胞肺癌(NSCLC)中可以对化疗结果进行预测和监测 [53]。凋亡细胞中角蛋白水解、异常的有丝分裂或新血管生成等事件会影响血液循环中角蛋白片段的浓度 [39]。

最近一项研究开发了一种等离子光纤免疫传感器,可用于检测组织等软性物中包括K17在内的生物标志物,对于微创体内生物标志物检测具有重要意义 [54]。另一项研究中研究人员使用MALDI-MSI和LC-MS/MS作为头颈癌中生物标志物发现的工具,可鉴定福尔马林固定、石蜡包埋的组织样品和新鲜冷冻切片中II型角蛋白等肿瘤标志物和药物靶标,能够在分子水平上进行组织活检以显示蛋白质的空间分布 [55]。越来越多新技术的应用极大的丰富了临床检测、诊断的手段,也扩展的角蛋白检测的应用方向。

5. 总结

在过去的二十多年里,随着各方面技术的进步,人们对角蛋白的研究和认识也不断深入。从分类,生物学功能及临床应用等方面对角蛋白进行了系统的描述,在临床癌症鉴定和检测方面已经有了十分广泛的应用。即便如此,人们在角蛋白的表达调控及参与信号转导方面的认识仍然不足。在癌症相关方向,角蛋白与肿瘤发生发展的关系仍需进一步探究,更多地开发角蛋白作为肿瘤标志物的作用,优化对肿瘤的早期干预、早期治疗,指导肿瘤的预后从而减缓或防止肿瘤的恶性转化,提高总生存期,降低复发率。

参考文献

[1] Harvey Lodish, A., Lawrence Zipursky, S., Matsudaira, P., et al. (2000) Molecular Cell Biology. 4th Edition, Springer, Berlin.
[2] Schweizer, J., Bowden, P.E., Coulombe, P.A., et al. (2006) New Consensus Nomenclature for Mammalian Keratins. Journal of Cell Biology, 174, 169-174.
https://doi.org/10.1083/jcb.200603161
[3] Bragulla, H.H. and Homberger, D.G. (2009) Structure and Functions of Keratin Proteins in Simple, Stratified, Keratinized and Cornified Ep-ithelia. Journal of Anatomy, 214, 516-559.
https://doi.org/10.1111/j.1469-7580.2009.01066.x
[4] Kurokawa, I., Takahashi, K., Moll, I. and Moll, R. (2011) Expression of Keratins in Cutaneous Epithelial Tumors and Related Disor-ders-Distribution and Clinical Significance. Experimental Dermatology, 20, 217-228.
https://doi.org/10.1111/j.1600-0625.2009.01006.x
[5] Pan, X., Hobbs, R.P. and Coulombe, P.A. (2013) The Ex-panding Significance of Keratin Intermediate Filaments in Normal and Diseased Epithelia. Current Opinion in Cell Biol-ogy, 25, 47-56.
https://doi.org/10.1016/j.ceb.2012.10.018
[6] Peiguo, G.C., Sean, K.L. and Lawrence, M.W. (2009) Keratin Expression in Endocrine Organs and Their Neoplasms. Endocrine Pathology, 20, 1-10.
https://doi.org/10.1007/s12022-009-9061-7
[7] Haines, R.L. and Lane, E.B. (2012) Keratins and Disease at a Glance. Journal of Cell Science, 125, 3923-3928.
https://doi.org/10.1242/jcs.099655
[8] Justin, T.J., Pierre, A.C., Raymond, K. and Bishr, M.O. (2018) Types I and II Keratin Intermediate Filaments. Cold Spring Harbor Perspectives in Biology, 10, a018275.
https://doi.org/10.1101/cshperspect.a018275
[9] Fanny, L., Kristin, S., Jamal, E.B. and Thomas, M.M. (2015) Regulation of Keratin Network Organization. Current Opinion in Cell Biology, 32, 56-65.
https://doi.org/10.1016/j.ceb.2014.12.006
[10] Ramms, L., Fabris, G., Windoffer, R, et al. (2013) Keratins as the Main Component for the Mechanical Integrity of Keratinocytes. Proceedings of the National Academy of Sciences of the United States of America, 110, 18513-18518.
https://doi.org/10.1073/pnas.1313491110
[11] Seltmann, K., Fritsch, A.W., Kas, J.A. and Magin, T.M. (2013) Keratins Significantly Contribute to Cell Stiffness and Impact Invasive Behavior. Proceedings of the National Academy of Sciences of the United States of America, 110, 18507-18512.
https://doi.org/10.1073/pnas.1310493110
[12] Chung, B.M., Rotty, J.D. and Coulombe, P.A. (2013) Networking Galore: Intermediate Filaments and Cell Migration. Current Opinion in Cell Biology, 25, 600-612.
https://doi.org/10.1016/j.ceb.2013.06.008
[13] Seltmann, K., Roth, W., Kroger, C., Loschke, F., Lederer, M., Huttelmaier, S. and Magin, T.M. (2013) Keratins Mediate Localization of Hemi-desmosomes and Repress Cell Motility. Journal of Investigative Dermatology, 133, 181-190.
https://doi.org/10.1038/jid.2012.256
[14] Fortier, A.M., Asselin, E. and Cadrin, M. (2013) Keratin 8 and 18 Loss in Epithelial Cancer Cells Increases Collective Cell Migration and Cisplatin Sensitivity through Claudin1 Up-Regulation. The Journal of Biological Chemistry, 288, 11555-11571.
https://doi.org/10.1074/jbc.M112.428920
[15] Kroger, C., Loschke, F., Schwarz, N., Windoffer, R., Leube, R.E. and Magin, T.M. (2013) Keratins Control Intercellular Adhesion Involving PKC-Alpha-Mediated Desmoplakin Phosphorylation. Journal of Cell Biology, 201, 681-692.
https://doi.org/10.1083/jcb.201208162
[16] Wallace, L., Roberts-Thompson, L. and Reichelt, J. (2012) Deletion of K1/K10 Does Not Impair Epidermal Stratification But Affects Desmosomal Structure and Nuclear Integrity. Journal of Cell Science, 125, 1750-1758.
https://doi.org/10.1242/jcs.097139
[17] Snider, N.T. and Omary, M.B. (2014) Post-Translational Modifications of Intermediate Filament Proteins: Mechanisms and Functions. Nature Reviews Molecular Cell Biology, 15, 163-177.
https://doi.org/10.1038/nrm3753
[18] Hyun, J.K., Won, J.C. and Chang, H.L. (2015) Phosphorylation and Reor-ganization of Keratin Networks: Implications for Carcinogenesis and Epithelial Mesenchymal Transition. Biomolecules & Therapeutics, 23, 301-312.
https://doi.org/10.4062/biomolther.2015.032
[19] Holle, A.W., Kalafat, M., Ramos, A.S., Seufferlein, T., Kemke-mer, R. and Spatz, J.P. (2017) Intermediate Filament Reorganization Dynamically Influences Cancer Cell Alignment and Migration. Scientific Reports, 7, 45152.
https://doi.org/10.1038/srep45152
[20] Windoffer, R., Beil, M., Magin, T.M. and Leube, R.E. (2011) Cytoskeleton in Motion: The Dynamics of Keratin Intermediate Filaments in Epithelia. Journal of Cell Biology, 194, 669-678.
https://doi.org/10.1083/jcb.201008095
[21] Bouameur, J.E., Schneider, Y., Begre, N., et al. (2013) Phosphoryla-tion of Serine 4642 in the C-Terminus of Plectin by MNK2 and PKA Modulates Its Interaction with Intermediate Fila-ments. Journal of Cell Science, 126, 4195-4207.
https://doi.org/10.1242/jcs.127779
[22] Liu, Y.H., Cheng, C.C., Ho, C.C., et al. (2011) Plectin Deficiency on Cy-toskeletal Disorganization and Transformation of Human Liver Cells in Vitro. Medical Molecular Morphology, 44, 21-26.
https://doi.org/10.1007/s00795-010-0499-y
[23] Bouameur, J.E., Favre, B. and Borradori, L. (2014) Plakins, a Versatile Family of Cytolinkers: Roles in Skin Integrity and in Human Diseases. Journal of Investigative Dermatology, 134, 885-894.
https://doi.org/10.1038/jid.2013.498
[24] Kuga, T., Kume, H., Kawasaki, N., et al. (2013) A Novel Mechanism of Keratin Cytoskeleton Organization through Casein Kinase Ialpha and FAM83H in Colorectal Cancer. Journal of Cell Science, 126, 4721-4731.
https://doi.org/10.1242/jcs.129684
[25] Kayser, J., Haslbeck, M., Dempfle, L., et al. (2013) The Small Heat Shock Protein Hsp27 Affects Assembly Dynamics and Structure of Keratin Intermediate Filament Networks. Biophysical Jour-nal, 105, 1778-1785.
https://doi.org/10.1016/j.bpj.2013.09.007
[26] Toivola, D.M., Strnad, P., Habtezion, A. and Omary, M.B. (2010) Intermediate Filaments Take the Heat as Stress Proteins. Trends in Cell Biology, 20, 79-91.
https://doi.org/10.1016/j.tcb.2009.11.004
[27] Weerasinghe, S.V., Ku, N.O., Altshuler, P.J., Kwan, R. and Omary, M.B. (2014) Mutation of Caspase-Digestion Sites in Keratin 18 Interferes with Filament Reorganization, and Predisposes to Hepatocyte Necrosis and Loss of Membrane Integrity. Journal of Cell Science, 127, 1464-1475.
https://doi.org/10.1242/jcs.138479
[28] Cao, L., Chang, H., Shi, X., Peng, C. and He, Y. (2016) Keratin Mediates the Recognition of Apoptotic and Necrotic Cells through Dendritic Cell Receptor DEC205/CD205. Proceedings of the National Academy of Sciences of the United States of America, 113, 13438-13443.
https://doi.org/10.1073/pnas.1609331113
[29] Cheng, F. and Eriksson, J.E. (2016) Intermediate Filaments and the Regulation of Cell Motility during Regeneration and Wound Healing. Cold Spring Harbor Perspectives in Biology, 9, a022046.
https://doi.org/10.1101/cshperspect.a022046
[30] Chung, B.M., Arutyunov, A., Ilagan, E., Yao, N., Wills-Karp, M. and Coulombe, P.A. (2015) Regulation of C-X-C Chemokine Gene Expression by Keratin 17 and hnRNP K in Skin Tumor Keratinocytes. Journal of Cell Biology, 208, 613-627.
https://doi.org/10.1083/jcb.201408026
[31] Hobbs, R.P., DePianto, D.J., Jacob, J.T., Han, M.C., Chung, B.M., Batazzi, A.S., Poll, B.G., Guo, Y., Han, J., Ong, S., et al. (2015) Keratin-Dependent Regulation of Aire and Gene Expression in Skin Tumor Keratinocytes. Nature Genetics, 47, 933-938.
https://doi.org/10.1038/ng.3355
[32] Toivola, D.M., Habtezion, A., Misiorek, J.O., et al. (2015) Absence of Keratin 8 or 18 Promotes Antimitochondrial Autoantibody Formation in Aging Male Mice. The FASEB Journal, 29, 5081-5089.
https://doi.org/10.1096/fj.14-269795
[33] Chan, J.K.L., Yuen, D., Too, P.H., et al. (2018) Keratin 6a Reorganiza-tion for Ubiquitin-Proteasomal Processing Is a Direct Antimicrobial Response. Journal of Cell Biology, 217, 731-744.
https://doi.org/10.1083/jcb.201704186
[34] Rotty, J.D. and Coulombe, P.A. (2012) A Wound-Induced Keratin In-hibits Src Activity during Keratinocyte Migration and Tissue Repair. Journal of Cell Biology, 197, 381-389.
https://doi.org/10.1083/jcb.201107078
[35] Helenius, T.O., Misiorek, J.O., Nystrom, J.H., et al. (2015) Keratin 8 Absence Down-Regulates Colonocyte HMGCS2 and Modulates Colonic Ketogenesis and Energy Metabolism. Molecu-lar Biology of the Cell, 26, 2298-2310.
https://doi.org/10.1091/mbc.E14-02-0736
[36] Alam, C.M., Silvander, J.S., Daniel, E.N., et al. (2013) Keratin 8 Modulates Beta-Cell Stress Responses and Normoglycaemia. Journal of Cell Science, 126, 5635-5644.
https://doi.org/10.1242/jcs.132795
[37] Kerns, M.L., Hakim, J.M., Lu, R.G., et al. (2016) Oxidative Stress and Dysfunctional NRF2 Underlie Pachyonychia Congenita Phenotypes. Journal of Clinical Investigation, 126, 2356-2366.
https://doi.org/10.1172/JCI84870
[38] Karantza, V. (2011) Keratins in Health and Cancer: More than Mere Epithe-lial Cell Markers. Oncogene, 30, 127-138.
https://doi.org/10.1038/onc.2010.456
[39] Stefan, W., Laura, K. and Klaus, P. (2019) Epithelial Keratins: Biology and Implications as Diagnostic Markers for Liquid Biopsies. Molecular Aspects of Medicine, 72, Article ID: 100817.
https://doi.org/10.1016/j.mam.2019.09.001
[40] Cristofanilli, M., Pierga, J.Y., Reuben, J., et al. (2019) The Clinical Use of Circulating Tumor Cells (CTCs) Enumeration for Staging of Metastatic Breast Cancer (MBC): International Ex-pert Consensus Paper. Critical Reviews in Oncology/Hematology, 134, 39-45.
https://doi.org/10.1016/j.critrevonc.2018.12.004
[41] Effenberger, K.E., Schroeder, C. and Hanssen, A. (2018) Im-proved Risk Stratification by Circulating Tumor Cell Counts in Pancreatic Cancer. Clinical Cancer Research, 24, 2844-2850.
https://doi.org/10.1158/1078-0432.CCR-18-0120
[42] Hille, C. and Pantel, K. (2018) Prostate Cancer: Circulating Tumour Cells in Prostate Cancer. Nature Reviews Urology, 15, 265-266.
https://doi.org/10.1038/nrurol.2018.25
[43] Chu, P.G. and Weiss, L.M. (2002) Keratin Expression in Human Tis-sues and Neoplasms. Histopathology, 40, 403-439.
https://doi.org/10.1046/j.1365-2559.2002.01387.x
[44] Bednarz-Knoll, N., Alix-Panabieres, C. and Pantel, K. (2011) Clinical Relevance and Biology of Circulating Tumor Cells. Breast Cancer Research, 13, 228.
https://doi.org/10.1186/bcr2940
[45] Sharma, P., Alsharif, S., Fallatah, A. and Chung, B.M. (2019) Intermediate Filaments as Effectors of Cancer Development and Metastasis: A Focus on Keratins, Vimentin, and Nestin. Cells, 8, E497.
https://doi.org/10.3390/cells8050497
[46] Luís, L., Manuel, N., Marta, I.O., et al. (2017) Sialyl-Tn Identifies Muscle-Invasive Bladder Cancer Basal and Luminal Subtypes Facing Decreased Survival, Being Expressed by Circulat-ing Tumor Cells and Metastases. Urologic Oncology: Seminars and Original Investigations, 35, 675.e1-675.e8.
https://doi.org/10.1016/j.urolonc.2017.08.012
[47] Heather, S., Annkathrin, H., Sonja, L., et al. (2019) EGFR and HER3 Expression in Circulating Tumor Cells and Tumor Tissue from Non-Small Cell Lung Cancer Patients. Scientific Reports, 9, 7406.
https://doi.org/10.1038/s41598-019-43678-6
[48] Antoni, S., Marek, S., Grażyna, D., et al. (2018) CD44+ Cy-tokeratin-Positive Tumor Cells in Blood and Bone Marrow Are Associated with Poor Prognosis of Patients with Gastric Cancer. Gastric Cancer, 22, 264-272.
https://doi.org/10.1007/s10120-018-0858-2
[49] Ahn, S.K., Moon, H.G., Ko, E., et al. (2013) Preoperative Serum Tissue Polypeptide-Specific Antigen Is a Valuable Prognostic Marker in Breast Cancer. International Journal of Cancer, 132, 875-881.
https://doi.org/10.1002/ijc.27727
[50] Barak, V., Goike, H., Panaretakis, K.W. and Einarsson, R. (2004) Clinical Utility of Cytokeratins as Tumor Markers. Clinical Biochemistry, 37, 529-540.
https://doi.org/10.1016/j.clinbiochem.2004.05.009
[51] Nanou, A., Coumans, F.A.W., van Dalum, G., et al. (2018) Circulating Tumor Cells, Tumor-Derived Extracellular Vesicles and Plasma Cytokeratins in Castration-Resistant Prostate Cancer Patients. Oncotarget, 9, 19283-19293.
https://doi.org/10.18632/oncotarget.25019
[52] Michael, N., Julia, S., Annett, M., et al. (2018) Cytokeratin-18 Fragments Predict Treatment Response and Overall Survival in Gastric Cancer in a Randomized Controlled Trial. Tumor Biology, 40, 1-8.
https://doi.org/10.1177/1010428318764007
[53] Holdenrieder, S., Wehnl, B. and Hettwer, K. (2017) Carcinoem-bryonic Antigen and Cytokeratin-19 Fragments for Assessment of Therapy Response in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. British Journal of Cancer, 116, 1037-1045.
https://doi.org/10.1038/bjc.2017.45
[54] Clotilde, R., Médéric, L., Jean-Charles, L., et al. (2017) Cancer Biomarker Sensing Using Packaged Plasmonic Optical Fiber Gratings: Towards in Vivo Diagnosis. Biosensors and Bioelectronics, 92,449-456.
https://doi.org/10.1016/j.bios.2016.10.081
[55] Franziska, H., Claudia, U., Thomas, K., et al. (2019) Identification of Proteomic Markers in Head and Neck Cancer Using MALDI-MS Imaging, LC-MS/MS, and Immunohistochemistry. Proteomics Clinical Applications, 13, Article ID: 1700173.
https://doi.org/10.1002/prca.201700173