肠球菌:潜在的益生菌
Enterococcus: Potential Probiotics
DOI: 10.12677/OJNS.2020.85047, PDF, HTML, XML, 下载: 557  浏览: 3,246 
作者: 黄云飞:四川大学生命科学学院,四川 成都
关键词: 肠球菌益生菌Enterococci Probiotics
摘要: 肠球菌是一种广泛存在于自然环境中的乳酸菌(LAB),同时也可寄居于人和动物的肠道内。肠球菌因其在健康促进方面的作用和食品工业中的技术优势等特性,它被广泛应用在发酵生产和药物中。肠球菌可作发酵剂、发酵附加物及益生菌。益生菌用于治疗腹泻、抗生素相关腹泻或肠易激综合征,降低胆固醇水平或提高宿主免疫力。本文就肠球菌的有益性进行综述。
Abstract: Enterococci are ubiquitous lactic acid bacteria (LAB) that exist widely in food and the natural environment, and they can also reside in the gastrointestinal tract of humans and animals. Enterococci are widely used in fermentation production and medicine due to their role in health promotion and technical advantages in the food industry. For example, Enterococci can be used as starters, fermentation additives and probiotics. Probiotics are used to treat various kinds of diarrhea, including antibiotic-related diarrhea and irritable bowel syndrome. Moreover, Enterococci are able to lower cholesterol levels and improve hosts’ immunity. This review summarizes the benefits of Enterococci.
文章引用:黄云飞. 肠球菌:潜在的益生菌[J]. 自然科学, 2020, 8(5): 387-391. https://doi.org/10.12677/OJNS.2020.85047

1. 引言

近年来,益生菌被广泛使用。世界卫生组织(WHO)将益生菌定义为“适量使用时,能给宿主带来健康益处的活菌” [1]。益生菌可以增强人体免疫力,促进新陈代谢和提高动物饲料消耗率 [2]。肠球菌是革兰氏阳性、兼性厌氧、无芽孢形成的乳酸菌(LAB),其主要存在于人和动物的胃肠道,但也广泛分布于食物和环境中。事实上,肠球菌常常被用作益生菌应用在制药工业、人类和兽医药物 [3]。与此同时,肠球菌也代表着一类很有前景的微生物,因为一些益生菌可以用于生产功能性食品,它们在食品应用中具有巨大的潜力,几十年来一直在乳制品工业中发挥作用 [4]。目前,一些肠球菌如屎肠球菌M74和屎肠球菌SF-68,被作为食品补充剂加入到几种已被证明有效和安全的益生菌制剂中,例如FortiFlora® and Cernivet® (包含屎肠球菌SF68, Cerbios-Pharma SA, Switzerland),和Symbioflor®1含有粪肠球菌(Symbiopharm, Herborn, Germany) [5]。肠球菌也会产生肠球菌素,一些肠球菌素为小分子多肽且具有热稳定性,并展现出良好的抗菌活性。肠球菌素使肠球菌被应用到体内抗菌治疗和体外延长食品保质期 [6] [7] [8]。因此,基于以上特性肠球菌也将在食品工业、人类和兽医药物中持续地使用,用于维持正常的肠道微生物群,刺激免疫系统,提高人和动物的食品和饲料的营养价值。

2. 肠球菌的分类及益生菌特征

肠球菌是一种低GC革兰氏阳性卵球菌,可以形成不同长度的链和对。肠球菌属的细菌是过氧化氢酶和氧化酶阴性的兼性厌氧细菌 [5]。目前,该属由58个物种组成 [9] [10] [11],最近也发现了一些新的物种,比如E. thailandicus [12]、E. saigonensis [13]、E. wangshanyuanii [10] 等。这些物种普遍存在于自然界中,且动物的胃肠道被认为是肠球菌的最大储存库。

益生菌菌株的理想特征还包括在健康人恶劣的胃肠道条件下(低pH、胃蛋白酶、胰酶、胆盐)存活并保持活力的能力,固定在肠道粘膜的能力,对吞噬细胞杀伤的敏感性,以及产生诸如肠球菌素等抗菌物质的能力。潜在的肠球菌益生菌还需要考虑的特征是,它们在体内交换DNA的能力应该是有限的。肠球菌作为益生菌,在临床上可以用来治疗腹泻以及降低胆固醇,在饲料管理方面包括稳定微生物环境和治疗动物的腹泻,减少肠内致病菌具有良好作用。同时肠球菌在鱼类养殖和食品发酵都有应用。

3. 肠球菌在腹泻治疗和其他方面的作用

肠球菌对人体具有多方面的益处。肠球菌在治疗肠道疾病方面的机制可能是基于该菌株本身是胃肠道的共生菌,并且它具有非常短的滞后期和世代时间(在最佳条件下约20分钟)。而且肠球菌可以产生肠球菌素(即核糖体合成释放到细胞外的抗菌肽),对腐败菌和食源性病原体如李斯特氏菌,金黄色葡萄球菌,大肠杆菌,霍乱弧菌和梭状芽孢杆菌都显示出抑制活性 [14]。屎肠球菌SF68在双盲实验安慰剂对照的临床试验中,证明了降低抗生素相关腹泻发生率的有效性 [15]。在体外,它对低pH值有抵抗力,对胆汁也有耐受性 [16]。杜伦肠球菌M4-5已被发现产生丁酸酯,短链脂肪酸(SCFA)可通过调节消炎和促炎因子诱导显著的抗炎作用,并有助于肠道上皮的完整性 [17]。

屎肠球菌LR13菌株表现出显著的胆固醇去除能力和对万古霉素的敏感性,并具有益生菌的大多数理想和必要的属性,是一个相当有希望的益生菌候选者 [18]。屎肠杆菌LCW44和杜氏肠球菌6HL分别对革兰氏阳性菌和革兰氏阴性菌表现出很强的抗菌活性 [19] [20]。除此以外,肠球菌分泌的肠球菌素DD28和DD93在体外表现出抗耐甲氧西林金黄色葡萄球菌(MRSA)的活性,研究发现该肠球菌素组合可以抑制MRSA-S1菌株的生物膜形成 [8]。因此益生菌为解决抑制耐药菌和抗生素缺乏等问题提供了新的思路。

4. 肠球菌对动物生长和腹泻治疗的作用

肠球菌作为益生菌除了应用在临床中,用以治疗相关疾病外,在动物治疗、饲料管理和各类养殖业中具有更大潜力。

在饲料监管方面,欧洲食品标准局(EFSA)授权某些肠球菌菌株用作青贮添加剂和日粮补充剂。例如,一些肠球菌益生菌被包括在饲料添加剂组中,用于稳定单胃和反刍动物的消化道微生物群落 [21]。EFSA批准屎肠球菌NCIMB-11181和屎肠球菌DSM7134菌株作为犊牛和仔猪的饲料添加剂。益生菌屎肠球菌SF68和粪肠球菌Symbioflor 1也被用于预防或治疗猪、家禽、牲畜和宠物的腹泻 [4]。此外,益生菌肠球菌优势之一是它对家畜生长和健康的性能特征有积极的影响。在此背景下,用益生菌肠球菌饲喂猪发现肠道病原体减少 [22]。同样,断奶仔猪口服屎肠球菌NHRD IHARA可提高血清和粪便IgA水平,促进仔猪生长 [23]。饲喂粪肠球菌可使粪便和猪舍空气中条件致病菌不动杆菌属(Acinetobacter)和埃希氏菌属-志贺氏菌属(Escherichia-Shigella)相对丰度显著降,对于养殖对象和饲养工人健康以及周边生态环境都具有有益作用 [24]。

在鸡中,屎肠球菌被证明可以改善生长、肠道形态和盲肠微生物区系稳态 [25]。屎肠球菌也被报道可以提高肉鸡的代谢效率和降低炎症反应 [26]。另外,大量研究表明肠球菌在水产养殖中的有益作用。事实上,一些研究报告了屎肠球菌对水生病原体的广泛抑制作用,这些病原体包括耶尔森氏菌、哈维氏弧菌、无乳链球菌和维罗尼气单胞菌 [27]。此外,许多试验研究了在饲料中加入屎肠球菌促进鱼类生长和刺激免疫反应的功效 [28]。

在食品发酵工业中,一些特性良好的肠球菌菌株由于其积极的属性被用作食品工业和/或益生菌的起始培养物、共培养物或保护性培养物。肠球菌属包括广泛的适合用作发酵剂的菌株,它们对包括肉类、乳制品和蔬菜产品在内的发酵食品的感官特性的发展做出了积极的贡献 [4]。屎肠球菌R2作为一种新型酸浆纯种发酵剂是泡菜中产酸菌,可以高效利用豆腐黄浆水中的低聚糖产酸制备酸浆 [29]。

5. 展望

肠球菌是自然界中普遍存在的一种乳酸菌。肠球菌常常作为发酵剂或附属物在发酵制品中使用,同时也在各种动物饲料中添加,而且其还作为益生菌在人类和兽医药物中均有使用。某些肠球菌菌株是极有潜力的益生菌,因此使用完善的安全评估尤为重要。利用新的生物技术,肠球菌及其特性的最新知识制定一套严格的安全评估准则,并按照其执行。并且将致病和安全的肠球菌区分,帮助工业制造商、卫生工作者和消费者接受这些菌株作为益生菌。

参考文献

[1] FAO/WHO (2002) Guidelines for the Evaluation of Probiotics in Food: Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food.
[2] 魏明颖, 王玉涵, 杨倩, 贾丽娜. 肠道益生菌功能特性研究进展[J]. 粮食与油脂, 2020, 33(4): 14-16.
[3] Higuita, N.I.A. and Huycke, M.M. (2014) Enterococcal Disease, Epidemiology, and Implications for Treatment.
[4] Franz, C.M.A.P., Huch, M., Abriouel, H., Holzapfel, W.H. and Galvez, A. (2011) Enterococci as Probiotics and Their Implications in Food Safety. International Journal of Food Microbiology, 151, 125-140.
https://doi.org/10.1016/j.ijfoodmicro.2011.08.014
[5] Braïek, O.B. and Smaoui, S. (2019) Enterococci: Between Emerging Pathogens and Potential Probiotics. BioMed Research International, 2019, Article ID: 5938210.
https://doi.org/10.1155/2019/5938210
[6] Achemchem, F., Abrini, J., Martínezbueno, M., Valdivia, E. and Ma-queda, M. (2006) Control of Listeria monocytogenes in Goat’s Milk and Goat’s Jben by the Bacteriocinogenic Entero-coccus faecium F58 Strain. Journal of Food Protection, 69, 2370-2376.
https://doi.org/10.4315/0362-028X-69.10.2370
[7] Khan, H., et al. (2010) Enterocins in Food Preservation. In-ternational Journal of Food Microbiology, 141, 1-10.
https://doi.org/10.1016/j.ijfoodmicro.2010.03.005
[8] Al Atya, A.K., et al. (2016) Anti-MRSA Activities of En-terocins DD28 and DD93 and Evidences on Their Role in the Inhibition of Biofilm Formation. Frontiers in Microbiology, 7, 817.
https://doi.org/10.3389/fmicb.2016.00817
[9] Parte, A.C. (2014) LPSN—List of Prokaryotic Names with Standing in Nomenclature. Nucleic Acids Research, 42, D613-D616.
https://doi.org/10.1093/nar/gkt1111
[10] Jin, D., et al. (2017) Enterococcus wangshanyuanii sp. nov., Isolated from Faeces of Yaks (Bos grunniens). International Journal of Systematic and Evolutionary Microbiology, 67, 5216-5221.
https://doi.org/10.1099/ijsem.0.002447
[11] Kadri, Z., Spitaels, F., Cnockaert, M., Praet, J., El Farricha, O., Swings, J., et al. (2015) Enterococcus bulliens sp. nov., a Novel Lactic Acid Bacterium Isolated from Camel Milk. Antonie van Leeuwenhoek, 108, 1257-1265.
https://doi.org/10.1007/s10482-015-0579-z
[12] Shewmaker, P.L., Steigerwalt, A.G., Nicholson, A.C., Carvalho, M.D.G.S., Facklam, R.R., Whitney, A.M., et al. (2011) Reevaluation of the Taxonomic Status of Recently Described Species of Enterococcus: Evidence that E. thailandicus Is a Senior Subjective Synonym of “E. sanguinicola” and Con-firmation of E. caccae as a Species Distinct from E. silesiacus. Journal of Clinical Microbiology, 49, 2676-2679.
https://doi.org/10.1128/JCM.00399-11
[13] Harada, T., Dang, V.C., Nguyen, D.P., Nguyen, T.A.D., Sakamoto, M., Ohkuma, M., et al. (2016) Enterococcus saigonensis sp. nov., Isolated from Retail Chicken Meat and Liver. Inter-national Journal of Systematic and Evolutionary Microbiology, 66, 3779-3785.
https://doi.org/10.1099/ijsem.0.001264
[14] Graham, K., Stack, H. and Rea, R. (2020) Safety, Beneficial and Technological Properties of Enterococci for Use in Functional Food Applications—A Review. Critical Reviews in Food Science and Nutrition, 10, 1-26.
https://doi.org/10.1080/10408398.2019.1709800
[15] Wunderlich, P.F., et al. (1989) Double-Blind Report on the Efficacy of Lactic Acid-Producing Enterococcus SF68 in the Prevention of Antibiotic-Associated Diarrhoea and in the Treatment of Acute Diarrhoea. The Journal of International Medical Research, 17, 333-338.
https://doi.org/10.1177/030006058901700405
[16] Franz, C.M.A.P., et al. (2011) Enterococci as Probiotics and Their Implications in Food Safety. International Journal of Food Microbiology, 151, 125-140.
https://doi.org/10.1016/j.ijfoodmicro.2011.08.014
[17] Avram-Hananel, L., Stock, J., Parlesak, A., Bode, C. and Schwartz, B. (2010) E Durans Strain M4-5 Isolated from Human Colonic Flora Attenuates Intestinal Inflammation. Diseases of the Colon & Rectum, 53, 1676-1686.
https://doi.org/10.1007/DCR.0b013e3181f4b148
[18] Singhal, N., Maurya, A.K., Mohanty, S., Kumar, M. and Virdi, J.S. (2019) Evaluation of Bile Salt Hydrolases, Cholesterol-Lowering Capabilities, and Probiotic Potential of Enterococcus faecium Isolated from Rhizosphere. Frontiers in Microbiology, 10, 1567.
https://doi.org/10.3389/fmicb.2019.01567
[19] Vimont, A., Fernandez, B., Hammami, R., Ababsa, A., Daba, H. and Fliss, I. (2017) Bacteriocin-Producing Enterococcus faecium LCW 44: A High Potential Probiotic Candidate from Raw Camel Milk. Frontiers in Microbiology, 8, 865.
https://doi.org/10.3389/fmicb.2017.00865
[20] Nami, Y., Abdullah, N., Haghshenas, B., Radiah, D., Rosli, R. and Khosroushahi, A.Y. (2014) Probiotic Assessment of Entero-coccus durans 6HL and Lactococcus lactis 2HL Isolated from Vaginal Microflora. Journal of Medical Microbiology, 63, 1044-1051.
https://doi.org/10.1099/jmm.0.074161-0
[21] Anadon, A., Martinezlarranaga, M.R. and Martinez, M.A. (2006) Probiotics for Animal Nutrition in the European Union. Regulation and Safety Assessment. Regulatory Toxicology and Pharmacology, 45, 91-95.
https://doi.org/10.1016/j.yrtph.2006.02.004
[22] Liao, S.F. and Nyachoti, M. (2017) Using Probiotics to Improve Swine Gut Health and Nutrient Utilization. Animal Nutrition, 3, 331-343.
https://doi.org/10.1016/j.aninu.2017.06.007
[23] Sukegawa, S., et al. (2014) Effects of Oral Administration of Heat-Killed Enterococcus faecium Strain NHRD IHARA in Post-Weaning Piglets. Animal Science Journal, 85, 454-460.
https://doi.org/10.1111/asj.12163
[24] 程首涛, 冯媛媛, 高敏, 仇天雷, 孙艳梅, 王旭明. 饲喂粪肠球菌对断奶仔猪粪便与猪舍气溶胶中细菌群落结构的影响[J]. 家畜生态学报, 2019, 40(10): 72-77.
[25] 刘军, 彭众, 喻礼怀, 董丽. 屎肠球菌对AA肉鸡肠道酶活和绒毛形态的影响[J]. 中国家禽, 2020, 42(2): 64-68.
[26] 安文艺, 雷佳琦, 董元洋, 武威, 刘璇, 邵玉新, 等. 壳寡糖与屎肠球菌对肉仔鸡生长性能、免疫功能及肠道短链脂肪酸含量的影响[J]. 中国畜牧杂志, 2019, 55(8): 110-117.
[27] Satish Kumar, R., et al. (2011) Purification and Characterization of Enterocin MC13 Produced by a Potential Aquaculture Probiont Enterococcus faecium MC13 Isolated from the Gut of Mugil cephalus. Canadian Journal of Microbiology, 57, 993-1001.
https://doi.org/10.1139/w11-092
[28] 鞠安琪, 谷巍, 张海朋, 曲磊, 张冬星, 陈龙, 等. 屎肠球菌对鲤鱼非特异性免疫酶活性和抗病力的影响[J]. 中国兽医科学, 2018, 48(2): 228-233.
[29] 陈志娜, 裴纪柳, 叶韬, 薛咏振, 詹志强, 李雅, 等. 泡菜源屎肠球菌Enterococcus faecium R2的环境胁迫耐受性及安全性评价[J]. 食品与发酵工业, 2019, 45(22): 32-38.