miR-21在糖尿病视网膜疾病中的研究进展
Research Progress of miR-21 in Diabetic Retinopathy
DOI: 10.12677/ACM.2020.108259, PDF, HTML, XML, 下载: 360  浏览: 591 
作者: 任 晓:延安大学附属医院,陕西 延安
关键词: miR-21糖尿病视网膜病变发病机制miR-21 Diabetic Retinopathy Pathogenesis
摘要: 糖尿病视网膜病变是糖尿病最常见的并发症,严重威胁患者视力和引起黄斑水肿,但是目前发病机制还不清楚,治疗主要是对症支持治疗,研究发现miRNA在糖尿病并发症发展中起重要作用。因此本文旨对miR-21在糖尿病视网膜疾病中的作用作一综述。
Abstract: Diabetic retinopathy is a serious threat to the vision of patients with complications, but the pathogenesis is not clear. The treatment is mainly symptomatic treatment. Studies have found that miRNA plays an important role in the development of diabetic complications. Therefore, the purpose of this article is to review the role of miR-21 in diabetic retinal diseases.
文章引用:任晓. miR-21在糖尿病视网膜疾病中的研究进展[J]. 临床医学进展, 2020, 10(8): 1725-1728. https://doi.org/10.12677/ACM.2020.108259

1. 引言

糖尿病视网膜病变是糖尿病的并发症之一,严重威胁眼底视功能,是造成患者失明的重要原因 [1]。其基本病理改变包括眼底出血、渗出、微血管瘤和视网膜新生血管形成 [2]。糖尿病视网膜病变按照严重程度分为非增殖性糖尿病视网膜病变和增殖性糖尿病视网膜病变,随着病情的进展会严重影响患者的视力进而引起生活质量的下降。由于糖尿病视网膜病变的发病机制目前还不是很清楚,所以早期诊断和治疗是改善预后的最主要的方法。microRNA (miR)是一类19~25个核苷酸长的非编码RNA分子,通常与其靶基因mRNA的3’非翻译区(3’-UTR)结合,导致mRNA降解和/或翻译抑制 [3] [4] [5]。因此miRNAs可以调节不同疾病的发生和发展 [6]。近年来研究发现微小RNA (miRNA)在糖尿病及其并发症发生、发展中起重要作用 [7] [8]。

2. 糖尿病视网膜疾病的概述

随着人们生活水平的提高,糖尿病患病率越来越高,糖尿病视网膜病变是糖尿病最常见的一种并发症。糖尿病视网膜病变分为六期:一期为眼底出血和微血管瘤改变;二期为硬性渗出;三期出现棉绒斑;四期出现视网膜新生血管和玻璃体出血;五期为新生血管增殖;六期为牵拉性视网膜脱离。前三期统称为非增殖期,后三期称为增殖期。若不及时治疗,病情从非增殖期进展到增殖期对视力的影响会越来越严重,还会引起新生血管性青光眼,给临床治疗带来巨大压力。增殖期糖尿病视网膜病变引起的并发症主要是对症治疗,如玻璃体腔抗血管内皮生长因子和激光治疗等,并且越晚治疗效果越差,因此早期检测循环中的对预测疾病进展的微小RNA十分重要。

3. miR-21的概述

miRNAs参与多种疾病的生理和病理过程,如葡萄糖稳态、血管生成和糖尿病及其相关的微血管和大血管并发症的发病机制 [9]。miR-21是microRNAs (miRs)的重要成员,位于染色体17q23-2上 [10],在PUBMED上检索发现2003年Zeng Y等人首次提出其在人类细胞中微小RNA的加工中的作用。miR-21是一种具有多种功能的重要miRNA [11],与不同的信号通路结合参与不同的生理病理过程如可以调节细胞增殖,Chen等人在椎前盘退行性变的病人的退变髓核细胞中通过qT-PCR和Western blot检测发现miR-21通过靶向和程序性细胞死亡因子4 (PDCD4)结合,使c-jun蛋白磷酸化增加,激活激活子蛋白-1相关的金属蛋白酶通路,促进退行髓核细胞增殖 [12]。Wu等人在食管癌病人中通过Western blot检测和Transwell法检测发现,miR-21和PTEN/PI3K/AKT中的信号蛋白结合,促使细胞迁移 [13]。miR-21参与细胞凋亡主要是和程序性细胞死亡因子结合促进细胞凋亡 [14] 和促进血管生成 [15] 主要是和PTEN结合,激活AKT和ERK1/2通路,使VEGF表达增加。miR-21与糖代谢 [16] 的发生有关。研究发现高糖情况下会使血管内皮细胞产生并释放大量炎性因子,这些炎症因子可以激活NF-κB信号通路 [17] [18],与miR-21上游启动子元件相结合使miR-21的表达增加,另外有研究证明糖尿病视网膜病变中缺氧诱导因子-1α和血管内皮生长因子表达上调 [19],而miR-21可拮抗高糖环境下其上调,表明miR-21可能通过调节缺氧诱导因子-1α和/血管内皮生长因子通路抑制糖尿病视网膜病变新生血管的生成 [20]。

4. miR-21在糖尿病视网膜疾病中的作用机制

虽然糖尿病视网膜病变的具体发生机制还不是很清楚,但是血糖浓度是其发生的一个独立危险因素。有研究发现miR-21可影响胰腺的发育,导致胰岛B细胞功能障碍,进而影响胰岛素分泌,使血糖升高 [21]。另外有研究发现高糖会影响血管内皮细胞释放炎性介质,导致血管通透性增加研究表明,在高糖环境中视网膜色素上皮细胞最易受到损害 [22] [23]。在人视网膜色素上皮ARPE-19细胞中,miR-21与血管内皮生长因子(VEGF)信号通路密切相关 [24],这可能与糖尿病视网膜病变的发生有关。

Lu等人发现miR-21可能通过抑制磷脂酰肌醇3-激酶/蛋白激酶B/血管内皮生长因子信号通路诱导视网膜血管内皮细胞凋亡,通过上调PTEN而减弱血管生成能力,来预防糖尿病视网膜病变的发生 [25]。另外Liu等人的研究发现miR-21通过靶向作用PTEN诱导肿瘤血管生成,激活AKT和ERK1/2信号通路,从而增强血管内皮生长因子的表达促进血管生成 [15] 这与Lucio等人发现miR-21参与血管舒张,减少血管内皮细胞凋亡,并通过多条信号通路参与血管重塑的研究相一致 [26]。

5. 总结和展望

miR-21在细胞的增殖、迁移、凋亡和血管生成等方面具有调节作用,与不同的信号通路接触表现出不同的作用。目前miR-21在很多疾病中都有所表现,尤其是在癌症的诊断和进展中发挥重要作用,其在血清或者血浆中的含量可以作为疾病的诊断标志物同时也可以反映疾病的进展,但是在糖尿病视网膜疾病中能否作为临床上确诊糖尿病视网膜病变、分期和治疗靶点有待于进一步研究。

参考文献

[1] 魏科, 李永蓉, 王志敏. 合肥地区2型糖尿病患者尿微量白蛋白肌酐比值与DR的关系[J]. 国际眼科杂志, 2020, 20(7): 1260-1263.
[2] 张海江, 梁亮, 田瑞. IL-23和IL-17在糖尿病性视网膜病变患者房水中的表达[J]. 国际眼科杂志, 2020, 20(7): 1153-1157.
[3] Guo, H., Ingolia, N.T., Weissman, J.S., et al. (2010) Mammalian Micrornas Predominantly Act to Decrease Target mRNA Levels. Nature: International Weekly Journal of Science, 466, 835-840.
https://doi.org/10.1038/nature09267
[4] Tien, H., Yvonne, T., et al. (2006) A Pattern-Based Method for the Identification of Microrna Binding Sites and Their Corresponding Heteroduplexes. Cell, 126, 1203-1217.
https://doi.org/10.1016/j.cell.2006.07.031
[5] Daehyun, B., Judit, V., Chanseok, S., et al. (2008) The Impact of Micrornas on Protein Output. Nature, 455, 64-71.
https://doi.org/10.1038/nature07242
[6] Xu, J., Zhao, J., Evan, G., et al. (2012) Circulating Micrornas: Novel Biomarkers for Cardiovascular Diseases. Journal of Molecular Medicine, 90, 865-875.
https://doi.org/10.1007/s00109-011-0840-5
[7] 黄俊, 毛新帮. 微小RNA在糖尿病视网膜病变新生血管生成中的研究进展[J]. 中华实验眼科杂志, 2017, 35(5): 478-480.
[8] 鲁冰, 任东升, 王松. 三种微小RNA在糖尿病肾脏疾病肾纤维化患者中的水平变化及临床应用研究[J]. 中国糖尿病杂志, 2019, 27(3): 189-193.
[9] Rodolfo, M., Lisa, T., Francesco, C., Donato, S., Paolo, C. and Leonardo, M. (2014) Role of microRNAs in the Modulation of Diabetic Retinopathy. Progress in Retinal and Eye Research, 43, 92-107.
https://doi.org/10.1016/j.preteyeres.2014.07.003
[10] Heng, W., Raymond, N., Xin, C., et al. (2016) Microrna-21 Is a Potential Link between Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma via Modulation of the Hbp1-p53-srebp1c Pathway. Gut, 65, 1850-1860.
https://doi.org/10.1136/gutjnl-2014-308430
[11] Qiu, F., Tong, H., Wang, Y., et al. (2018) Inhibition of miR-21-5p Suppresses High Glucose-Induced Proliferation and Angiogenesis of Human Retinal Microvascular Endothelial Cells by the Regulation of AKT and ERK Pathways via Maspin. Bioscience, Biotechnology, and Biochemistry, 82, 1366-1376.
[12] Chen, B., et al. (2016) Effect of Microrna-21 on the Proliferation of Human Degenerated Nucleus Pulposus by Targeting Programmed Cell Death 4. Brazilian Journal of Medical and Biological Research, 49, e5020.
https://doi.org/10.1590/1414-431x20155020
[13] Wu, Y., Qi, H., Deng, D., et al. (2016) MicroRNA-21 Promotes Cell Proliferation, Migration, and Resistance to Apoptosis through PTEN/PI3K/AKT Signaling Pathway in Esophageal Cancer. Tumor Biology, 37, 12061-12070.
https://doi.org/10.1007/s13277-016-5074-2
[14] Ono, M., Yamada, K., Avolio, F., et al. (2015) Targeted Knock-Down of miR21 Primary Transcripts Using Snomen Vectors Induces Apoptosis in Human Cancer Cell Lines. PLoS ONE, 10, e0138668.
https://doi.org/10.1371/journal.pone.0138668
[15] Liu, L., Li, C., Chen, Q., et al. (2011) MiR-21 Induced Angiogenesis through AKT and ERK Activation and HIF-1α Expression. PLoS ONE, 6, e19139.
https://doi.org/10.1371/journal.pone.0019139
[16] Qiu, R., Yu, X., Wang, L., et al. (2020) Inhibition of Glycolysis in Pathogenic TH17 Cells through Targeting a miR-21-Peli1-c-Rel Pathway Prevents Autoimmunity. The Journal of Immunology, ji2000060.
https://doi.org/10.4049/jimmunol.2000060
[17] Hartge, M.M., Unger, T. and Kintscher, U. (2007) The Endothelium and Vascular Inflammation in Diabetes. Diabetes & Vascular Disease Research Official Journal of the International Society of Diabetes & Vascular Disease, 4, 84-88.
https://doi.org/10.3132/dvdr.2007.025
[18] Mudaliar, H., Pollock, C., Ma, J., et al. (2014) The Role of TLR2 and 4-Mediated Inflammatory Pathways in Endothelial Cells Exposed to High Glucose. PLoS ONE, 9, e108844.
https://doi.org/10.1371/journal.pone.0108844
[19] 徐国兴, 许建斌, 胡建章. 糖尿病大鼠视网膜中缺氧诱导因子-1α和血管内皮生长因子表达的研究[J]. 国际眼科杂志, 2008(3): 487-490.
[20] Zhou, R., Hu, G., Gong, A.Y., et al. (2010) Binding of NF-kappaB p65 Subunit to the Promoter Elements Is Involved in LPS-Induced Transactivation of miRNA Genes in Human Biliary Epithelial Cells. Nucleic Acids Research, 38, 3222-3232.
https://doi.org/10.1093/nar/gkq056
[21] Sekar, D., Venugopal, B., Sekar, P., et al. (2016) Role of microRNA 21 in Diabetes and Associated/Related Diseases. Gene, 582, 14-18.
https://doi.org/10.1016/j.gene.2016.01.039
[22] Kim, D.I., Park, M.J., Choi, J.H., et al. (2015) Hyperglycemia-Induced GLP-1R Downregulation Causes RPE Cell Apoptosis. International Journal of Biochemistry & Cell Biology, 59, 41-51.
https://doi.org/10.1016/j.biocel.2014.11.018
[23] Malfait, M., Gomez, P., Veen, T.A.B.V., et al. (2001) Effects of Hyperglycemia and Protein Kinase C on Connexin43 Expression in Cultured Rat Retinal Pigment Epithelial Cells. The Journal of Membrane Biology, 181, 31-40.
https://doi.org/10.1007/s0023200100082
[24] Lu, J., Zhang, Z., Ma, X., et al. (2020) Repression of Microrna-21 Inhibits Retinal Vascular Endothelial Cell Growth and Angiogenesis via PTEN Dependent-PI3K/AKT/VEGF Signaling Pathway in Diabetic Retinopathy. Experimental Eye Research, 190, Article ID: 107886.
https://doi.org/10.1016/j.exer.2019.107886
[25] Ye, Z., Li, Z.H. and He, S.Z. (2017) Long Non-Coding RNA Associated-Competing Endogenous RNAs Are Induced by Clusterin in Retinal Pigment Epithelial Cells. Molecular Medicine Reports, 16, 8399-8405.
https://doi.org/10.3892/mmr.2017.7606
[26] Iannone, L., Zhao, L., Dubois, O., et al. (2014) miR-21/DDAH1 Pathway Regulates Pulmonary Vascular Responses to Hypoxia. Biochemical Journal, 462, 103.
https://doi.org/10.1042/BJ20140486