合并脑炎的Xp21邻近基因缺失综合征1例并文献复习
A Case of Xp21 Contiguous Gene Deletion Syndrome with Encephalitis and Literature Review
摘要: 目的:探讨Xp21邻近基因缺失综合征患者的临床特点和基因特征,为临床诊断提供参考。方法:回顾性分析1例Xp21邻近基因缺失综合征临床资料及染色体检测结果,并对相关文献进行复习。结果:患儿表现为发育迟缓、智力障碍、反复呕吐、反复感染、反复抽搐、低钠血症、高甘油三酯血症、高转氨酶血症、胆结石、心肌损害和肝功能损害。染色体CNV检测显示X染色体从p21.3到p21.1区域的缺失,大小为8.84 Mb,共缺失44个基因,包括4个致病基因:IL1RAPL1、GK、NROB1、DMD,诊断为Xp21邻近基因缺失综合征。结论:Xp21邻近基因缺失综合征临床表现多样,诊断困难,一旦考虑此病,需完善基因检测尽早诊断。
Abstract: Objective: To investigate the clinical and genetic characteristics of Xp21 contiguous gene deletion syndrome, and to provide reference for clinical diagnosis. Methods: We retrospectively analyzed the clinical data and chromosome test results of a boy and reviewed the relevant literature. Results: The child presented with developmental retardation, mental retardation, repeated vomiting, repeated infections, repeated convulsions, hyponatremia, hypertriglyceridemia, hypertransaminasemia, gallstones, myocardial damage, and liver function impairment. CNV test of chromosome showed a deletion of X chromosome from p21.3 to p21.1, with the size of 8.84 Mb. A total of 44 genes were deleted, including four related morbid genes: IL1RAPL1, GK, NROB1 and DMD, and he was diagnosed as Xp21 contiguous gene deletion syndrome. Conclusion: The clinical manifestations of Xp21 contiguous gene deletion syndrome are diverse and the diagnosis is difficult. Once this disease is considered, genetic testing should be carried out as soon as possible.
文章引用:伊丽萍, 潘晓宇, 陈宗波. 合并脑炎的Xp21邻近基因缺失综合征1例并文献复习[J]. 临床医学进展, 2021, 11(1): 92-98. https://doi.org/10.12677/ACM.2021.111013

1. 引言

Xp21邻近基因缺失综合征(Xp21 contiguous gene deletion syndrome)是一种罕见的遗传性疾病,涉及Xp21的多个基因位点,遵循X染色体隐性遗传模式,多数病例为散发,少数为家族遗传。目前超过100例报告的患者为男性,只有少数报告病例为女性 [1]。该综合征可能涉及先天性肾上腺发育不良(adrenal hypoplasia congenita, AHC)、甘油激酶缺乏(glycerol kinase deficiency, GKD)、杜氏肌营养不良(Duchenne muscular dystrophy, DMD)、慢性肉芽肿病(chronic granulomatous disease, CGD)、视网膜色素变性(retinitis pigmentosa, RP)和智力障碍 [2] [3] [4] 等。目前,这种疾病还没有有效的治疗方法。在此,我们报道了一名患有Xp21邻近基因缺失综合征的男孩,回顾患者的临床特点并对相关文献进行复习,旨在为临床诊断提供参考。

2. 临床资料

患儿,男,2月龄,生后因体重下降入住儿科。患儿系G2P2,足月出生,出生史无异常,出生体重3.9 kg,出生时头围33 cm,身长50 cm,生后混合喂养,生后3天,出现呕吐,生后14天,出现脱水,当时体重3.5 kg。入院体格检查:体重3.15 kg ( 表1),考虑先天性肾上腺皮质功能不良可能,给予补钠、纠正脱水、保肝及营养心肌等对症治疗,更换脱脂奶粉喂养,病情好转出院。在1岁零3个月时,因发热伴抽搐第3次住院,体格检查:体重8="" (p3~p15),身长65="" ( 表1);血尿遗传代谢筛查提示甘油激酶缺乏的可能;脑脊液示外观清亮,细胞数50="" ×="" 10 6/L,白细胞12 × 10 6/L,单核细胞占88%;颅脑MRI示双侧额顶枕颞叶异常信号影,考虑脑炎( 图1);动态脑电图

Table 1. Patient’s laboratory examination

表1. 患儿实验室检查

Na:血清钠离子,TG:甘油三酯,CK:肌酸激酶,CK-MB:肌酸激酶同工酶,ALT:谷丙转氨酶,AST:谷草转氨酶,ACTH:促肾上腺皮质激素。

T1WI T2WI

Figure 1. MRI of brain showed abnormal signal in bilateral frontal lobe, occipital lobe and temporal lobe

图1. 颅脑MRI示双侧顶枕颞叶异常信号影

Figure 2. A part of video electroencephalography (VEEG) showed a few sharp and slow composite waves occurred synchronously in each region during sleep

图2. 脑电图示清醒时未见异常波,睡眠时见少量不典型尖慢复合波各区同步单发,少量不典型放电

检查示清醒时未见异常波,睡眠时见少量不典型尖慢复合波各区同步单发,少量不典型放电(图2);肾上腺薄层CT平扫示双侧肾上腺显示欠清;颈椎、胸椎、腰椎MRI平扫未见明显异常。考虑脑炎、甘油激酶缺乏、先天性肾上腺发育不良、发育迟缓,给予人免疫球蛋白(2 g/kg)及抗炎、对症支持治疗后,病情好转出院。在2岁时,再次出现发热伴抽搐第4次住院。体格检查:体重10 kg (P3~P5),身长72 cm ( 表1)。染色体全基因组基因拷贝数变异cnv检测示xp21.3~p21.1 (chrx:="" 28,440,001~37,280,000)缺失8.84="" mb,共缺失44个基因(包含 IL1RAPL1 DMD GK NR0B1)。对症治疗5天后出院。患儿父母亲及哥哥进行基因验证,未发现异常。在2岁3月时,因发绀、呼吸困难被送到急诊,在抢救过程中发生心室颤动而死亡。 表1)。染色体全基因组基因拷贝数变异cnv检测示xp21.3~p21.1>

3. 讨论

Xp21邻近基因缺失综合征的临床特征取决于缺失片段的大小以及所涉及基因的数量和性质。该综合征的常见组合是由GK基因缺失引起的甘油激酶缺乏症(GKD),NROB1基因缺失引起的先天性肾上腺发育不良(AHC),由DMD基因缺失引起的杜氏肌营养不良(DMD)以及由IL1RAPL1基因缺失引起的智力障碍。本例患儿特点为喂养困难、发育迟缓、智力障碍、营养不良、反复感染、反复低钠和反复抽搐,同时伴脑炎。多次生化检查示ALT、AST、CK、CK-MB、TG、ACTH升高,血钠降低,皮质醇降低(表1);血尿遗传代谢提示甘油激酶缺乏;染色体全基因组基因拷贝数变异CNV检测示IL1RAPL1DMDGKNR0B1相关致病基因缺失,结合临床表现及辅助检查,最终确诊Xp21邻近基因缺失综合征。而患儿母亲的染色体CNV验证正常,因此,本例患者是新生突变个体,不是家系遗传。

NROB1基因定位于Xp21上,它的突变或缺失可能导致AHC,而AHC往往是Xp21邻近基因缺失综合征的首发症状,也是最严重的表现 [5] [6],其临床特征主要是肾上腺皮质激素(糖皮质激素,盐皮质激素和性腺激素)的缺乏。AHC通常在出生后几周内发生,首先是盐皮质激素缺乏症状。在婴儿期和儿童期,大多数患儿会出现呕吐、腹泻、脱水、发育迟缓、盐消耗、色素沉着和抽搐发作 [6] [7],在感染、发热等应激状态下,易诱发低血糖抽搐、电解质紊乱(低钠、高钾)等肾上腺皮质功能危象的表现,严重者致死 [5]。生化检查往往显示低钠血症、高钾血症、低血糖症和酸中毒,同时ACTH的浓度升高,而且感染会加重或诱发这些症状的出现 [8]。之后会出现糖皮质激素缺乏表现,青春期患儿会因促性腺激素低而无青春期的发育 [9]。本例患儿主要是盐皮质激素缺乏,表现为反复呕吐、进食困难、抽搐、低钠血症和发育迟缓,但血钾和血糖水平正常,反复的呼吸道感染和中枢神经系统感染诱发了患儿反复低钠和抽搐等表现。尽管在视频脑电图中未检测到癫痫样放电,但脑MRI (图1)和脑脊液检查的结果显示为脑炎,证明患儿出现了中枢神经系统感染。同时,患儿血清皮质醇降低,ACTH升高(表1),这也与AHC的生化表现是一致的。

DMD是由位于Xp21上的DMD基因突变引起的,它是X连锁隐性遗传性肌肉疾病,最早于1986年被发现 [10],临床特征是进行性肌无力、肌张力低下和肌萎缩。DMD和贝氏肌营养不良(BMD)是两种临床表型,DMD在12岁之前呈现出快速发展的趋势,而BMD则呈现出较温和的临床进展过程 [11] [12]。有研究报道过由于婴儿的肌肉系统不成熟,大多数受影响的儿童无法显示肌肉无力和肌肉萎缩,而AST、ALT和CK的水平通常会升高 [13]。本例患儿有心肌损伤,心肌酶谱示CK及CK-MB升高(表1),肝功显示AST和ALT水平升高(表1),且患儿肌张力低下,这些特征与DMD的表现是一致的。然而,这个孩子没有心力衰竭,且心脏超声检查正常。也有文献报道过癫痫发作可以是BMD的首发症状 [14],因此患儿抽搐发作也可能与DMD基因缺失有关。此外,呼吸肌无力也会导致该患儿反复发生呼吸道感染。

GK基因定位于Xp21.1上,编码参与甘油三酯代谢的甘油激酶,当该基因发生突变时,甘油激酶活性降低,甘油不能转变为糖,则在体内异常堆积引起高甘油血症、类瑞士综合征样表现、低血糖等 [15]。GK基因的缺失或突变会导致GKD,是X连锁隐性疾病,大多数甘油激酶缺乏症患者表现为甘油三酯代谢异常,高甘油三酯血症和甘油尿 [16]。本例患儿TG升高,且血尿遗传代谢筛查证实了甘油酸激酶缺乏症,这与GK基因缺失的表达一致。

IL1RAPL1基因位于Xp21染色体区域,是与X连锁智力障碍相关的新兴基因位点 [17]。1999年,Alain Carrie团队首先鉴定了IL1RAPL1基因,他们认为IL1RAPL1基因可以在大脑中表达,这与X连锁智力低下的非特异性形式有关 [18]。IL1RAPL1在参与记忆发育的大脑结构中高表达,它可能在具有潜在记忆和学习能力的生理过程中发挥特殊作用 [19] [20]。本例患儿表现出智力低下,这也与IL1RAPL1缺失的临床表现相符合。

本例患儿临床表现典型,多系统均有表现,且合并有脑炎,最终经染色体基因检测确诊。因此提示临床医生,若存在肾上腺功能低下的相关症状,且心肌酶、转氨酶异常增高时,应考虑到Xp21邻近基因缺失综合征,建议尽快行基因检测,提高早期诊断率,避免漏诊、误诊。

同意书

该病例报道获得病人家属的知情同意。

NOTES

*通讯作者。

参考文献

[1] Heide, S., Afenjar A., Edery, P., Sanlaville, D., Keren, B., Rouen, A., et al. (2015) Xp21 Deletion in Female Patients with Intellectual Disability: Two New Cases and a Review of the Literature. European Journal of Medical Genetics, 58, 341-345.
https://doi.org/10.1016/j.ejmg.2015.04.003
[2] Fries, M.H., Lebo, R.V., Schonberg, S.A., Golabi, M., Seltzer, W.K., Gitelman, S.E., et al. (1993) Mental Retardation Locus in Xp21 Chromosome Microdeletion. American Journal of Medical Genetics, 46, 363-368.
https://doi.org/10.1002/ajmg.1320460404
[3] Ma, H.W., Jiang, J., Wang, Y.P., et al. (2004) Gene Deletion Analysis of a Chinese Boy with Xp21 Contiguous Gene Deletion Syndrome. Chinese Medical Journal, 117, 789-791.
[4] 王旭, 吴迪, 方方, 姜敏. Xp21临近基因缺失综合征6例临床和遗传学研究[J]. 中华实用儿科杂志, 2015, 30(7): 535-539.
[5] Minari, R., Vottero, A., Tassi, F., Viani, I., Maria Neri, T., Elisabeth Street, M., et al. (2015) A Novel Mutation in the NR0B1 Gene in a Family with Monozygotic Twin Sisters and Congenital Adrenal Hypoplasia Affected Children. Hormones, 14, 160-166.
https://doi.org/10.14310/horm.2002.1490
[6] Wikiera, B., Jakubiak, A., Zimowski, J., Noczynska, A. and Smigiel, R. (2012) Complex Glycerol Kinase Deficiency-X-Linked Contiguous Gene Syndrome Involving Congenital Adrenal Hypoplasia, Glycerol Kinase Deficiency, Muscular Duchenne Dystrophy and Intellectual Disability (IL1RAPL Gene Deletion). Pediatric Endocrinology, Diabetes, and Metabolism, 18, 153-157.
[7] Rodriguez-Estevez, A., Perez-Nanclares, G., Fernandez-Toral, J., Rivas-Crespo, F., López-Siguero, J.P., Díez, I., et al. (2015) Clinical and Molecular Characterization of Five Spanish Kindreds with X-Linked Adrenal Hypoplasia Congenita: Atypical Findings and a Novel Mutation in NR0B1. Journal of Pediatric Endocrinology & Metabolism, 28, 1129-1137.
https://doi.org/10.1515/jpem-2014-0472
[8] Battistin, C., Menezes Filho, H.C., Domenice, S., Yumie Nishi, M., Della Manna, T., Kuperman, H., et al. (2012) A Novel DAX1/NR0B1 Mutation in a Patient with Adrenal Hypoplasia Congenita and Hypogonadotropic Hypogonadism. Arquivos Brasileiros de Endocrinologia & Metabologia, 56, 496-500.
https://doi.org/10.1590/S0004-27302012000800006
[9] Niakan, K.K. and Mccabe, E.R. (2015) DAX1 Origin, Function, and Novel Role. Molecular Genetics and Metabolism, 86, 70-83.
https://doi.org/10.1016/j.ymgme.2005.07.019
[10] Waldrop, M.A. and Flanigan, K.M. (2019) Update in Duchenne and Becker Muscular Dystrophy. Current Opinion in Neurology, 32, 722-727.
https://doi.org/10.1097/WCO.0000000000000739
[11] Wang, L., Chen, M., He, R., Sun, Y., Yang, J., Xiao, L., et al. (2017) Serum Creatinine Distinguishes Duchenne Muscular Dystrophy from Becker Muscular Dystrophy in Patients Aged ≤3 Years: A Retrospective Study. Frontiers in Neurology, 8, 196.
https://doi.org/10.3389/fneur.2017.00196
[12] Mavrogeni, S., Markousis-Mavrogenis, G., Papavasiliou, A. and Kolovou, G. (2015) Cardiac Involvement in Duchenne and Becker Muscular Dystrophy. World Journal of Cardiology, 7, 410-414. http://dx.doi.org/10.4330/wjc.v7.i7.410
[13] Veropalumbo, C., Esposito, G., Esposito, G., Maddaluno, S., Ruggiero, L. and Vajro, P. (2012) Aminotransferases and Muscular Diseases: A Disregarded Lesson. Case Reports and Review of the Literature. Journal of Paediatrics and Child Health,48, 886-890.
https://doi.org/10.1111/j.1440-1754.2010.01730.x
[14] Miao, J., Feng, J.C., Zhu, D. and Yu, X.-F. (2016) A Case Report: Becker Muscular Dystrophy Presenting with Epilepsy and Dysgnosia Induced by Duplication Mutation of Dystrophin Gene. BMC Neurology, 16, Article No. 255.
https://doi.org/10.1186/s12883-016-0777-y
[15] 李秀珍, 刘丽, 梅慧芬. 儿童复合型甘油激酶缺乏症[J]. 中国当代儿科杂志, 2007, 9(5): 441-444.
[16] Suthiworachai, C., Tammachote, R., Srichomthong, C., Ittiwut, R., Suphapeetiporn, K., Sahakitrungruang, T., et al. (2019) Identification and Functional Analysis of Six DAX1 Mutations in Patients With X-Linked Adrenal Hypoplasia Congenita. Journal of the Endocrine Society, 3, 171-180.
https://doi.org/10.1210/js.2018-00270
[17] Laino, L., Bottillo, I., Piedimonte, C., Bernardini, L., Torres, B., Grammatico, B., et al. (2016) Clinical and Molecular Characterization of a Boy with Intellectual Disability, Facial Dysmorphism, Minor Digital Anomalies and a Complex IL1RAPL1 Intragenic Rearrangement. European Journal of Paediatric Neurology, 20, 971-976.
https://doi.org/10.1016/j.ejpn.2016.07.003
[18] Carrie, A., Jun, L., Bienvenu, T., Vinet, M.-C., McDonell, N., Couvert, P., et al. (1999) A New Member of the IL-1 Receptor Family Highly Expressed in Hippocampus and Involved in X-Linked Mental Retardation. Nature Genetics, 23, 25-31.
https://doi.org/10.1038/12623
[19] Montani, C., Gritti, L., Beretta, S., Verpelli, C. and Sala, C. (2019) The Synaptic and Neuronal Functions of the X-Linked Intellectual Disability Protein Interleukin-1 Receptor Accessory Protein Like 1 (IL1RAPL1). Developmental Neurobiology, 79, 85-95.
https://doi.org/10.1002/dneu.22657
[20] Chatron, N., Thibault, L., Lespinasse, J., Labalme, A., Schluth-Bolard, C., Till, M., et al. (2017) Genetic Counselling Pitfall: Co-Occurrence of an 11.8-Mb Xp22 Duplication and an Xp21.2 Duplication Disrupting IL1RAPL1. Molecular Syndromology, 8, 325-330.
https://doi.org/10.1159/000479455