海藻酸钠及其衍生材料处理废水的研究进展
Research Progress Sodium Alginate Gel and Its Derived Materials in Wastewater Treatment
DOI: 10.12677/AAC.2021.111002, PDF, HTML, XML, 下载: 737  浏览: 3,109 
作者: 孙 爽, 周 兴, 王国袖, 田叶顺, 王文龙, 宋占龙, 赵希强*:山东大学燃煤污染物减排国家工程实验室,山东 济南
关键词: 海藻酸钠吸附重金属离子染料废水Sodium Alginate Adsorption Heavy Metal Ions Dye Wastewater
摘要: 随着社会的高速发展,污染日益严重,废水处理已经成为重要的环境问题。研究人员已经研究了大量的方法来处理污水和工业废水,使用廉价、可生物降解和环境稳定的吸附剂进行表面吸附被视为一种有效且具有成本效益的方法,海藻酸钠就是吸附剂之一,但由于海藻酸钠存在机械强度和稳定性低等问题,目前在工业中并没有大规模应用。本文介绍了海藻酸钠的性质,从碳材料、金属及金属氧化物、有机物等方面综述了多种海藻酸钠吸附材料的制备,总结了海藻酸钠及其衍生材料吸附废水中重金属离子以及有机污染物的研究进展,并提出了需要解决的若干问题,在后续研究中若能结合材料环境科学制备出性能稳定、吸附容量大的海藻酸钠复合材料,对于提升海藻酸钠的工业价值具有重要意义。
Abstract: With the rapid development of society and increasingly serious pollution, wastewater treatment has become an important environmental problem. Researchers have studied a large number of methods to treat sewage and industrial wastewater. The use of cheap, biodegradable and environmentally stable adsorbents for surface adsorption is considered an effective and cost-effective method. Sodium alginate is the adsorbent One, but due to the low mechanical strength and stability of sodium alginate, it has not been widely used in industry at present. This article introduces the properties of sodium alginate, summarizes the preparation of a variety of sodium alginate adsorption materials from carbon materials, metals and metal oxides, organics, etc., summarizes the adsorption of heavy metal ions and organic substances in wastewater by sodium alginate and its derivatives. The research progress of pollutants has put forward several problems that need to be solved. In the follow-up research, it is important to improve the industrial value of sodium alginate if the sodium alginate composite material with stable performance and large adsorption capacity can be prepared in combination with material environmental science significance.
文章引用:孙爽, 周兴, 王国袖, 田叶顺, 王文龙, 宋占龙, 赵希强. 海藻酸钠及其衍生材料处理废水的研究进展[J]. 分析化学进展, 2021, 11(1): 16-27. https://doi.org/10.12677/AAC.2021.111002

1. 引言

随着我国人口的增长与工业的快速发展,对水资源的需求量与废水的排放量都逐渐增多,废水中含有大量的重金属离子和染料等污染物,会对人类健康和环境产生明显危害 [1]。它们具有难生物降解的特点,目前大多采用操作简单、原料来源广泛的物理吸附将其有效去除,但物理吸附具有吸附容量有限的缺点,对于某些制备成本高的吸附材料,还存在处理成本过高的问题,因此,研究开发新型廉价可循环的吸附材料是至关重要的。

海藻酸钠是一种高分子天然材料,来源广泛,无毒无害,具有良好的生物相容性,阻燃性和生物降解性,其本身对重金属离子有一定的吸附作用,但存在稳定性差、耐水性不足、机械强度差等问题,因而通常要进一步加工才能使用。对海藻酸钠改性可显著提高材料的稳定性、耐水性、成膜性及机械性能,赋予海藻酸钠特殊的功能,使得其在废水处理、药物包埋、医用组织工程等领域具有很大的应用前景 [2]。基于此,本文总结了海藻酸钠与碳材料、金属及氧化物、有机物等制备复合材料的进展,以及海藻酸钠衍生材料吸附水中污染物的应用,指出了当前研究尚存的不足之处,展望了海藻酸钠在工业废水处理领域的巨大前景。

2. 海藻酸钠及其衍生材料

海藻酸钠(sodium alginate, SA)也叫褐藻酸钠、褐藻胶,是从褐藻中提取出来的一类多糖 [3],是褐藻的细胞膜组成成分,在海带中含量高达30%~40%,分子式为(C6H7NaO6)X,分子结构如图1。物理性质通常为白色或淡黄色的粉末,无臭无味,有吸湿性,不溶于乙醇、乙醚或酸(Ph < 3),溶于水形成粘稠状液体。

海藻酸钠能够与钙、钡、铁、铝等二价或三价金属阳离子过离子键“交联”而形成三维网络结构,俗称“蛋–盒”结构(如图2) [4],也就是凝胶 [5]。海藻酸钠的交联是指在交联剂存在作用下,将大分子物质交联到海藻酸钠上实现功能化的过程 [2],主要的作用机理是基于SA可与二价及以上的金属离子Al3+、Ca2+、Fe3+、Co2+、Ni2+、Cu2+、Zn2+、La3+、C3+和Y3+等进行键合,使得海藻酸钠结构中原有的Na+和H+被金属离子取代,进而结合形成具有三维网状结构的海藻酸盐水凝胶颗粒 [6]。海藻酸钠与多价阳离子结合的能力遵循以下次序:Pb2+ > Cu2+ > Cd2+ > Ba2+ > Sr2+ > Ca2+ > Co2+,Ni2+,Zn2+ > Mn2+ [7]。

Figure 1. Molecular structure of sodium alginate

图1. 海藻酸钠分子结构

Figure 2. SA gel classic eggshell structure

图2. SA凝胶经典蛋壳结构

2.1. 海藻酸钠–碳材料

海藻酸钠为水溶性粉末,可以与金属离子形成凝胶,然而其形成凝胶后稳定性和机械性能较差,且由于其致密的孔结构,吸附性能无法满足要求。而碳材料具有较高的比表面积、孔径适中、分布均匀、吸附速度快、杂质少等优点,常用于污染物吸附,但某些碳材料如碳纳米管价格昂贵,无法广泛用于污染物吸附,某些碳材料如生物炭粉末吸附后不易回收处理。将二者结合起来形成凝胶球可以提高海藻酸钠的孔径、稳定性和机械性能,且吸附污染物后经脱附多可多次循环利用。

Yi等 [8] 利用海藻酸钠(SA)/聚乙烯醇(PVA)/氧化石墨烯(GO)在Ca2+中交联制备了一种新型水凝胶(SPG),SPG水凝胶微球对Cu(II)和U(VI)的最大吸附容量分别为247.16 mg/g和403.78 mg/g,吸附剂在5个吸附–解吸循环后仍表现出出色的可重复使用性。Bai等 [9] 将流延溶液(混合的氧化石墨烯,藻酸钠和尿素)与氯化钙溶液交联制备氧化石墨烯/藻酸盐水凝胶膜(GAHMs),用于对Cr(III)和Pb(II)的去除,最佳吸附量分别达到118.6和327.9 mg/g。

Wei [10] 利用石墨氮化碳改性海藻酸钠制备了复合水凝胶(g-C3N4/SA,如图3),用于对Pb(II)、Ni(II)和Cu(II)的吸附,充分解决了石墨氮化碳用作吸附剂难以回收分离的问题,且g-C3N4/SA具有优异的再生能力,五个循环之后仍然具有良好的吸附容量。

Figure 3. Schematic diagram of the formation of g-C3N4/SA

图3. g-C3N4/SA的形成示意图 [11]

F.B等 [11] 以纳米零价铁(NZVI)、纳米磁铁矿(MNP)和粉末活性炭(PAC)为载体,在海藻酸钠溶液中加入碳酸钙粉体,与氯化钙和柠檬酸反应后制备了复合微球,光学和扫描电子显微镜(SEM)图像显示,纳米颗粒均匀地嵌在聚合物珠中并形成了气泡(如图4)。实验结果表明,每克NZVI固定化颗粒能将4.3~9.6 mg 硝态氮(NO3N)降低为氨氮(NH4-N)且47.8%的NH4-N被PAC固定在珠子中,证明了利用微球去除硝酸盐的有效性。

Figure 4. SEM image of microspheres (left) and adsorption mechanism of microspheres (right)

图4. 微球的SEM图像(左)和微球的吸附机理(右)

此外,在制备海藻酸钠–碳基复合材料时,利用海藻酸钠作为包埋材料是目前研究最成熟的包埋固定技术之一 [12],因为海藻酸钠分子结构中含有大量羧基和羟基,海藻酸钠作为包埋剂在众多固定化载体材料(琼脂、卡拉胶、壳聚糖等)中具有稳定性高(耐酸、耐热等)、网络孔隙大、寿命长、原料价廉易得、传质性能好、成球性能好、制备简单、无毒、无污染等优点 [13] [14]。

WU等 [15] 以海藻酸钠为包埋材料,生物炭为添加剂,固定小球藻,制得生物炭–海藻酸钠联合固定化小球藻胶球,并将其用于水中氨氮的去除。在最佳条件下胶球重复使用一次的氨氮去除率仍可达 66.87%。刘立 [16] 以Ca2+为交联剂,采用海藻酸钠凝胶包埋法对花生壳生物炭粉进行固定化,制备了对Pb (II)和Cu (II)都具有一定的吸附性的高锰酸钾改性生物炭的双改性凝胶球。何恬叶 [17] 借鉴生物包埋法,将纳米零价铁生物炭海藻酸钠小球中,制备了稳定化吸附材料——海藻酸钠/纳米零价铁生物炭小球,用于水中重金属的吸附。Yu [18] 用藻酸盐(CA)包裹生物炭(BC)制备微球(CA/BC)作为绿色吸附剂,用于从水溶液中去除Pb (II),在pH = 5时,CA/BC的最大吸附容量为155.04 mg/g。

碳材料具有比表面积大、孔径适中等优良的吸附性能,但单一的碳材料用作吸附材料成本较高,海藻酸钠来源广泛且具有生物可降解性。将海藻酸钠和碳材料制成复合材料,吸附解析后可循环使用多次,增强了对重金属离子的吸附性能,降低了吸附剂的使用成本。

2.2. 海藻酸钠–金属/金属氧化物复合材料

海藻酸钠与重金属离子具有蛰合作用,但海藻酸钠的机械性能差,并具有溶胀性,因此在吸附水中污染物时容易被破坏。众多研究表明,许多金属或金属氧化物对吸附重金属离子具有促进作用,但在水中容易发生聚集。将两者结合起来,形成稳定的凝胶结构,既可以提高海藻酸钠的稳定性和机械性能,同时也可以减少金属氧化物的聚集,发挥其吸附性能。

D. P等 [19] 采用磁铁矿(Fe3O4)纳米粒子和硫脲对海藻酸钠微球进行改性制备了MAT微球,用于吸附水溶液中的汞离子。利用BET和BJH测得MAT微球的表面积为7.3472 m2/g,孔径为12.9058 nm,体积为0.0255 cm3/g,通过FT-IR测定了MAT微球分子结构中存在大量的羟基、羧基、硫醇和胺官能团。对吸附过程进行动力学和热力学拟合,其结果符合拟一阶模型和Langmuir模型,说明Hg离子的吸附主要是通过官能团之间的静电相互作用和化学键合,以及在占据所有可用位点的微珠表面形成饱和层来实现的。Lv等 [20] 将Fe(0)-Fe3O4嵌入聚乙烯醇(PVA)/海藻酸钠(SA)微珠中,制备的复合材料表现出优异的物理性能和催化反应性能,将该复合材料用于对Cr (VI)的去除,具有可重复使用性,四次运行后效率为69.8%。R. D等 [21] 将纳米二氧化硅包埋在海藻酸钠中制备成复合材料,用于对Pb (II)离子的吸附。结果表明,Pb (II)在包埋的二氧化硅纳米颗粒上的吸附达到平衡时间是较快的,吸附的主导机制是化学吸附,具有自发放热性质,符合Langmuir单分子层等温吸附模型。Demey等 [22] 通过使用藻酸盐和氧化铝制备了一种新型复合材料作为吸附剂评估了硼的去除,复合藻酸盐–氧化铝(CAAl)在中性pH下表现出有效的除硼性能,使用CAA1的最大吸附容量分别为5.2 mmol/g。

2.3. 海藻酸钠–有机物复合凝胶

海藻酸钠结构中含有大量的羧基和羟基,而高分子有机物中也含有大量的官能团,将两者复合形成的凝胶结构可以增加活性吸附位点,使其物理性能得到显著改善,由此达到材料循环使用以及吸附能力最大化的目的。

Yue等 [23] 通过聚乙烯醇(PVA)、藻酸钠(SA)与CaCl2溶液和戊二醛的化学交联,制备了由柔性互穿聚合物网络核和刚性半壳组成的核–壳结构水凝胶,将从蔗渣中提取的短纤维素纳米纤维(CNFs)掺入水凝胶中,对甲基蓝吸附量增加了10%,且CNFs在PVA-SA基质中的均匀分布使聚合物分子链之间产生了额外的氢键,提高了水凝胶的密度,粘弹性和机械强度。Yafei等 [24] 利用海藻酸钠(SA)为功能单体,和戊二醛(GA)在AlCl3/CaCl2溶液中交联,通过液滴聚合制备了新型的藻酸钠凝胶球,制备的(GA-SA-Al/Ca)凝胶球在温度、pH和离子强度方面都增强了有一定程度的耐受性。

2.4. 海藻酸钠–其他类材料复合凝胶

海藻酸钠除了与碳材料、金属/金属氧化物、有机物等形成复合材料外,还可以与普鲁士蓝、尿素甲醛、有机膨润土、纤维素等物质复合以提高对污染物的吸附性能。

Eunbee等 [25] 利用海藻酸钠与Fe (III)离子交联形成水凝胶珠,Fe (III)离子作为交联剂的同时与六氰基铁酸酯反应导致形成普鲁士蓝(PB),PB在珠粒内部稳定均匀分布(如图5)。复合珠粒中PB的嵌入量是传统藻酸钠-PB复合珠粒中的PB的两倍以上,同时对Cs离子的吸附能力提高了二到五倍,主要原因是PB含量较高和藻酸钠水凝胶含有丰富的微孔结构。

Figure 5. Schematic diagram of the formation of sodium alginate-based composite beads

图5. 藻酸钠基复合珠形成的示意图 [26]

Qu等 [26] 将尿素甲醛(UF)嫁接到藻酸盐的骨架上制备微珠来作为吸附剂,从水溶液中去除重金属离子。表征结果表明,UF修饰使材料的分子间力减小,增加了大量的氮和氧供体原子,增强了微珠的孔网络和结构稳定性。N.B等 [27] 利用活化的有机膨润土和海藻酸钠混合包封制备珠粒,用来去除水溶液中的大量亚甲基蓝和甲基橙,结果表明,复合材料中甲基橙的吸附量随有机膨润土比例的增加而增加,亚甲基蓝的吸附量随黏土分率的降低而增加,海藻酸盐/活化的有机膨润土混合珠粒是高效,高潜力的吸附剂。谢水波等 [28] 将羟乙基纤维素(HEC)与海藻酸钠(SA)进行混合,利用戊二醛交联处理后制备了HEC/SA高分子复合多孔薄膜,在45℃时,HEC/SA复合膜对U (VI)的最大吸附容量达到了357.1 mg/g。

3. 海藻酸钠及其衍生材料处理废水的应用

近年来,由于新型可持续水凝胶材料的研发,拓展了海藻酸钠在废水处理中的应用 [29]。水凝胶基复合材料具有物理和化学稳定性好、表面光滑、聚合物网络结构灵活、可重复利用和多功能等特点 [30] [31],在吸附去除不同类型的有机污染物和无机污染物方面有极大的用途。在众多的水凝胶中,海藻酸钠水凝胶因其分子链上有大量的游离羧基(-COONa)、羟基(-OH),这些基团可以通过配位、离子交换、螯合、静电力的作用吸附金属离子和有机污染物 [32] 的特点而受到众多研究学者的关注。

3.1. 处理重金属离子废水

重金属是目前我国需要应对的危险性污染物之一,严重影响着人类的健康和生态平衡,如急性铅中毒会引发大脑损害、肾脏受损和肠胃疾病等 [33]。海藻酸盐具有丰富的官能团,可与重金属离子发生螯合作用、静电作用等,从而来实现对重金属离子的高效捕获和去除 [34]。改性海藻酸钠制备凝胶球对多种重金属离子(如Cu (II),Cr (VI),Cr (III),Cd (II),Ni (II),Pb (II),Sb (III))均有较好的处理效果,且大多经过多次解析后可循环重复利用(如表1)。

Table 1. Removal of heavy metal ions in solution by sodium alginate gel and its derivative materials

表1. 海藻酸钠凝胶及其衍生材料对溶液中重金属离子的去除

海藻酸钠及其衍生材料对重金属离子的吸附主要由于是其自身的官能团与金属离子之间发生相互作用,根据这种相互作用的不同,海藻酸钠对金属离子的吸附过程可分为化学吸附和物理吸附。化学吸附是指金属离子与吸附剂表面分子或原子发生了电子的转移、化学键的生成和破坏,主要特点是大多数化学吸附过程中仅发生单分子层吸附,吸附热与化学反应热相当,会消耗大量的活性吸附位点,且多数化学吸附过程不可逆,因此发生化学吸附的复合材料在吸附稳定后不宜解吸,解析后再次循环使用时吸附容量会明显降低。物理吸附是由吸附质和吸附剂之间的范德华力所引起,由于是分子间的吸引力所引起的吸附,所以物理吸附的主要特点是多为多层吸附,结合力较弱,吸附和解吸速度也都较快。发生物理吸附的海藻酸钠基复合材料经过解析后多可循环使用,物理吸附又包括离子交换、螯合作用、静电作用等多种形式。

改性海藻酸钠制备凝胶球去除废水中的重金属离子具有简便、经济、有效的特点。海藻酸钠本身为粉末状作为吸附剂后不易从溶液中分离,添加其他性能优异的吸附材料与海藻酸钠交联制备凝胶复合材料来去除水中的重金属离子效果明显,且分离性能优越,复合材料可通过沉淀法快速从溶液中分离出来,为工业应用提供了可能性,此外海藻酸钠及复合材料具有出色的可重复使用性,在多次吸附-解吸循环后仍然具有良好的吸附能力,可有效地减少在实际应用中的成本。

3.2. 处理染料废水

社会的不断发展推动了印染工业的快速发展,同时也产生了大量的高浓度染料废水。染料为有机合成的材料,在工业纺织废水的处理中较为困难。吸附法是印染工厂废水处理的主要方法之一,目前最典型的材料为活性炭,但活性炭吸附具有再生性能差、价格昂贵、容量低的问题,限制了在工业应用中的进一步发展。海藻酸钠及其衍生材料因其具有优良的活性吸附基团,对染料废水的处理具有明显效果(如表2),且物理和化学性能稳定,具有良好的再生和循环利用性,在印染废水处理的工业应用中具有广泛前景。但目前海藻酸钠基复合材料作为吸附剂处理染料废水的研究,大多数针对单一染料,而印染废水成分复杂且PH值范围变化大,将其应用于工业实际中还需要进一步研究。

Table 2. Application of sodium alginate gel and its derivatives in dye wastewater treatment

表2. 海藻酸钠凝胶及其衍生材料在染料废水处理中的应用

3.3. 再生循环处理

表3所示,海藻酸钠水凝胶及其衍生材料除对废水首次吸附有明显效果外,大多可循环使用,经过解析介质解析脱附后对污染物仍有较强的吸附作用,在重复循环之后保持良好的性能,具有经济和可循环性。

Table 3. Regeneration cycle treatment of sodium alginate gel and its derivative materials

表3. 海藻酸钠凝胶及其衍生材料的再生循环处理

4. 结语

海藻酸钠是一种天然的高分子材料,来源广泛,无毒无害,具有良好的物理化学性能,由其所制备的衍生材料在吸附水中污染物等方面已有较多研究且展现出较大的前景。但在实际应用中存在材料溶胀、机械性能差、比表面积低等问题,还需要进一步研究。在以后的研究中应重点关注以下问题:

(1) 海藻酸钠具有致密的孔结构,比表面积低,不利于充分发挥其对污染物的吸附性能,因此在制备海藻酸钠凝胶球时提高其孔隙率,增加其活性吸附位点,提高污染物的吸附效率是后续研究的主要问题。

(2) 海藻酸钠凝胶球在吸附污染物的过程中受环境条件影响较大,尤其是pH。在pH较小的酸性环境中,海藻酸钠凝胶球容易受到破坏,影响其吸附效率和循环利用。因此在制备海藻酸钠凝胶球时如何使其具有优异的机械强度和稳定性是存在的问题之一。

(3) 在实际工业应用中,废水中成分含量复杂,除含有重金属离子和染料外还含有其他污染物,可能会对吸附剂的吸附效果产生影响。因此在后续海藻酸钠吸附材料研究中应结合工业废水实际组分进行模拟研究。

NOTES

*通讯作者。

参考文献

[1] 孙朝辉. 基于海藻酸钠复合改性吸附材料的制备及对重金属离子的吸附研究[D]: [硕士学位论文]. 西安: 长安大学, 2019.
[2] 柴雍, 王鸿儒, 姚一军, 王瑞瑞. 海藻酸钠改性材料的研究进展[J]. 现代化工, 2018, 38(7): 57-61+63.
[3] 符明夏, 张艺, 赵秀志, 陈壮, 林勇, 陈慧. 海藻酸钠调控碳酸钙晶体研究综述[J]. 内江科技, 2017, 38(4): 88-89.
[4] Wang, B.B., Li, D.H., Tang, M.W., Ma, H.B., Gui, Y.G., Tian, X., Quan, F.Y., Song, X.Q. and Xia, Y.Z. (2018) Alginate-Based Hierarchical Porous Carbon Aerogel for High-Performance Supercapacitors. Journal of Alloys and Compounds, 749, 517-522.
https://doi.org/10.1016/j.jallcom.2018.03.223
[5] Dan, A., Oka, M., Fujii, Y., et al. (2017) Removal of Heavy Metals from Synthetic Landfill Leachate in Lab-Scale Vertical Flow Constructed Wetlands. Science of the Total Environment, 584-585, 742-750.
https://doi.org/10.1016/j.scitotenv.2017.01.112
[6] Yuan, L., Wu, Y., Gu, Q.S., et al. (2017) Injectable Photo Crosslinked Enhanced Double-Network Hydrogels from Modified Sodium Alginate and Gelatin. International Journal of Biological Macromolecules, 96, 569-577.
https://doi.org/10.1016/j.ijbiomac.2016.12.058
[7] Russo, R., Malinconico, M. and Santagata, G. (2007) Effect of Cross-Linking with Calcium Ions on the Physical Properties of Alginate Films. Biomacromolecules, 8, 3193-3197.
https://doi.org/10.1021/bm700565h
[8] Yi, X.F., Sun, F.L., Han, Z.H., Han, F.H., He, J.R., Ou, M.R., Gu, J.J. and Xu, X.P. (2018) Graphene Oxide Encapsulated Polyvinyl Alcohol/Sodium Alginate Hydrogel Microspheres for Cu(II) and U(VI) Removal. Ecotoxicology and Environmental Safety, 158, 309-318.
https://doi.org/10.1016/j.ecoenv.2018.04.039
[9] Bai, C.L., Wang, L. and Zhu, Z.Y. (2020) Adsorption of Cr(III) and Pb(II) by Graphene Oxide/Alginate Hydrogel Membrane: Characterization, Adsorption Kinetics, Isotherm and Thermodynamics Studies. International Journal of Biological Macromolecules, 147, 898-910.
https://doi.org/10.1016/j.ijbiomac.2019.09.249
[10] Shen, W., An, Q.-D., Xiao, Z.-Y., Zhai, S.-R., Hao, J.-A. and Tong, Y. (2020) Alginate Modified Graphitic Carbon Nitride Composite Hydrogels for Efficient Removal of Pb(II), Ni(II) and Cu(II) from Water. International Journal of Biological Macromolecules, 148, 1298-1306.
https://doi.org/10.1016/j.ijbiomac.2019.10.105
[11] Fatemeh, B., Yu, X.F., Zou, Y.C., Sun, Y., Sun, G.Z. (2020) Impregnated Calcium-Alginate Beads as Floating Reactors for the Remediation of Nitrate-Contaminated Groundwater. Chemical Engineering Journal, 382.
[12] Wang, L., Wang, Y., Ma, F., et al. (2019) Mechanisms and Reutilization of Modified Biochar Used for Removal of Heavy Metals from Wastewater: A Review. Science of the Total Environment, 668, 1298-1309.
https://doi.org/10.1016/j.scitotenv.2019.03.011
[13] Kyzas, G.Z., Bomis, G., Kosheleva, R.I., et al. (2019) Nanobubbles Effect on Heavy Metal Ions Adsorption by Activated Carbon. Chemical Engineering Journal, 356, 91-97.
https://doi.org/10.1016/j.cej.2018.09.019
[14] Huang, D., Wu, J., Wang, L., et al. (2019) Novel Insight into Adsorption and Co-Adsorption of Heavy Metal Ions and an Organic Pollutant by Magnetic Graphene Nanomaterials in Water. Chemical Engineering Journal, 358, 1399-1409.
https://doi.org/10.1016/j.cej.2018.10.138
[15] Wu, Y.C., Zhang, J.F., Liu, Z., et al. (2019) Removal of Ammonia Nitrogen by Biochar-Alginate-Jointly Immobilized Chlorella Vulgaris. Chinese Journal of Environmental Engineering, 13, 2863-2869.
[16] 刘立. 生物炭基吸附剂的制备及其对Pb~(2+)和Cu~(2+)的吸附性能研究[D]: [硕士学位论文]. 广州: 广州大学, 2019.
[17] 何恬叶. 稳定化纳米零价铁生物炭对水中重金属的吸附[D]: [硕士学位论文]. 成都: 成都理工大学, 2019.
[18] Yu, C.-J., Dong, X.-Y., Wang, M. and Lin, Q. (2018) Preparation and Characterization of a Calcium Alginate/Biochar Microsphere and Its Adsorption Characteristics and Mechanisms for Pb(II). Environmental Science, 39, 3719-3728.
[19] Patiño-Ruiz, D., Bonfante, H., De Ávila, G. and Herrera, A. (2019) Adsorption Kinetics, Isotherms and Desorption Studies of Mercury from Aqueous Solution at Different Temperatures on Magnetic Sodium Alginate-Thiourea Microbeads. Environmental Nanotechnology, Monitoring & Management, 12, Article ID: 100243.
https://doi.org/10.1016/j.enmm.2019.100243
[20] Lv, X.S., Jiang, G.M., Xue, X.Q., Wu, D.L., Sheng, T.T., Sun, C. and Xu, X.H. (2013) Fe(0)-Fe3O4 Nanocomposites Embedded Polyvinyl Alcohol/Sodium Alginate Beads for Chromium(VI) Removal. Journal of Hazardous Materials, 262, 748-758.
https://doi.org/10.1016/j.jhazmat.2013.09.036
[21] Soltani, R.D.C., Khorramabadi, G.S., Khataee, A.R. and Jorfi, S. (2014) Silica Nanopowders/Alginate Composite for Adsorption of Lead(II) Ions in Aqueous Solutions. Journal of the Taiwan Institute of Chemical Engineers, 45, 973-980.
https://doi.org/10.1016/j.jtice.2013.09.014
[22] Demey, H., Barron-Zambrano, J., Mhadhbi, T., Miloudi, H., Yang, Z., Ruiz, M. and Sastre, A.M. (2019) Boron Removal from Aqueous Solutions by Using a Novel Alginate-Based Sorbent: Comparison with Al Particles. Polymers, 11, 1509.
https://doi.org/10.3390/polym11091509
[23] Yue, Y.Y., Han, J.Q., Han, G.P., French, A.D., Qi, Y.D. and Wu, Q.L. (2016) Cellulose Nanofibers Reinforced Sodium Alginate-Polyvinyl Alcohol Hydrogels: Core-Shell Structure Formation and Property Characterization. Carbohydrate Polymers, 147, 155-164.
https://doi.org/10.1016/j.carbpol.2016.04.005
[24] Hu, Y.F., Wei, X.Y., Hu, Y.L., Wang, W., Fan, J.H., Liu, X.T., Chai, W.S., Zhou, Z.Y. and Ren, Z.Q. (2020) Facile Preparation of Sodium Alginate-Based Gel Spheres by Droplet Polymerization Method for Removal of Levofloxacin from Aqueous Solution. Chemical Engineering Journal, 392, Article ID: 123718.
https://doi.org/10.1016/j.cej.2019.123718
[25] Cho, E., Kim, J., Park, C.W., Lee, K.-W. and Lee, T.S. (2018) Chemically Bound Prussian Blue in Sodium Alginate Hydrogel for Enhanced Removal of Cs Ions. Journal of Hazardous Materials, 360, 243-249.
https://doi.org/10.1016/j.jhazmat.2018.08.031
[26] Qu, P., Li, Y.C., Huang, H.Y., Chen, J.J., Yu, Z.B., Huang, J., Wang, H.L. and Gao, B. (2020) Urea Formaldehyde Modified Alginate Beads with Improved Stability and Enhanced Removal of Pb2+, Cd2+, and Cu2+. Journal of Hazardous Materials, 396, Article ID: 122664.
https://doi.org/10.1016/j.jhazmat.2020.122664
[27] Belhouchat, N., Zaghouane-Boudiaf, H. and Viseras, C. (2017) Removal of Anionic and Cationic Dyes from Aqueous Solution with Activated Organo-Bentonite/Sodium Alginate Encapsulated Beads. Applied Clay Science, 135, 9-15.
https://doi.org/10.1016/j.clay.2016.08.031
[28] 谢水波, 罗景阳, 刘清, 凌辉, 段毅, 王劲松. 羟乙基纤维素/海藻酸钠复合膜对六价铀的吸附性能及吸附机制[J]. 复合材料学报, 2015, 32(1): 268-275.
[29] Yeung, R.A. and Kennedy, R.A. (2018) A Comparison of Selected Physico-Chemical Properties of Calcium Alginate Fibers Produced Using Two Different Types of Sodium Alginate. Journal of the Mechanical Behavior of Biomedical Materials, 90, 155-164.
https://doi.org/10.1016/j.jmbbm.2018.10.011
[30] Yang, J.S., Xie, Y.J. and He, W. (2011) Research Progress on Chemical Modification of Alginate: A Review. Carbohydrate Polymers, 84, 33-39.
https://doi.org/10.1016/j.carbpol.2010.11.048
[31] Imran, A., Iffat, N., et al. (2019) Development and Application of Novel Bio-Magnetic Membrane Capsules for the Removal of the Cationic Dye Malachite Green in Wastewater Treatment. RSC Advances, 9, 3625-3646.
https://doi.org/10.1039/C8RA09275C
[32] 朱一民, 沈岩柏, 魏德洲. 海藻酸钠吸附铜离子的研究[J]. 东北大学学报, 2003(6): 589-592.
[33] 姚温浩, 于飞, 马杰. 海藻酸盐复合凝胶吸附材料的合成及其在水处理中的应用[J]. 化学进展, 2018, 30(11): 1722-1733.
[34] Gong, W.J., Fan, Y.H., Xie, B.H., Tang, X.B., Guo, T.C., Luo, L.N. and Liang, H. (2020) Immobilizing Microcystis aeruginosa and Powdered Activated Carbon for the Anaerobic Digestate Effluent Treatment. Chemosphere, 244, Article ID: 125420.
https://doi.org/10.1016/j.chemosphere.2019.125420
[35] Nkuigue, F.P., Djoufac, W.E., Andrada, M.S., Julien, V., Constant, T., Tsopbou, N.P. and Mermoz, S.J. (2020) Removal of Cu(II) from Aqueous Solution Using a Composite Made from Cocoa Cortex and Sodium Alginate. Environmental Science and Pollution Research International, 27, 1-16.
https://doi.org/10.1007/s11356-019-07206-3
[36] 刘珊, 张悦, 田薪成, 赵春朋, 冯婷, 魏莉. 海藻酸钠改性铝污泥功能球吸附Cu(II)的研究[J]. 应用化工, 2020, 49(1): 11-16.
[37] Hu, X.L., Long, L., Gong, T.J., Zhang, J.Q., Yan, J.P. and Xue, Y.W. (2020) Enhanced Alginate-Based Microsphere with the Pore-Forming Agent for Efficient Removal of Cu(II). Chemosphere, 240, Article ID: 124860.
https://doi.org/10.1016/j.chemosphere.2019.124860
[38] 肖燕萍. 不同负载型纳米零价铁对水中Cu(II)和Cr(VI)的去除研究[D]: [硕士学位论文]. 上海: 东华大学, 2017.
[39] Gokila, S., Gomathi, T., Sudha, P.N. and Anil, S. (2017) Removal of the Heavy Metal Ion Chromiuim(VI) Using Chitosan and Alginate Nanocomposites. International Journal of Biological Macromolecules, 104, 1459-1468.
https://doi.org/10.1016/j.ijbiomac.2017.05.117
[40] Ebrahimi, F., Sadeghizadeh, A., Neysan, F. and Heydari, M. (2019) Fabrication of Nanofibers Using Sodium Alginate and Poly(Vinyl alcohol) for the Removal of Cd2+ Ions from Aqueous Solutions: Adsorption Mechanism, Kinetics and Thermodynamics. Heliyon, 5, e02941.
https://doi.org/10.1016/j.heliyon.2019.e02941
[41] Li, X.L., Qi, Y.X., Li, Y.F., Zhang, Y., He, X.H. and Wang, Y.H. (2013) Novel Magnetic Beads Based on Sodium Alginate Gel Crosslinked by Zirconium(IV) and Their Effective Removal for Pb2+ in Aqueous Solutions by Using a Batch and Continuous Systems. Bioresource Technology, 142, 611-619.
https://doi.org/10.1016/j.biortech.2013.05.081
[42] Yi, X.F., Sun, F.L., Han, Z.H., Han, F.H., He, J.R., Ou, M.R., Gu, J.J. and Xu, X.P. (2018) Graphene Oxide Encapsulated Polyvinyl Alcohol/Sodium Alginate Hydrogel Microspheres for Cu(II) and U(VI) Removal. Ecotoxicology and Environmental Safety, 158, 309-318.
https://doi.org/10.1016/j.ecoenv.2018.04.039
[43] Wang, L.L., Luo, Y.P., Li, H., Yu, D.Y., Wang, Y.J., Wang, W. and Wu, M.H. (2020) Preparation and Selective Adsorption of Surface-Imprinted Microspheres Based on Hyperbranched Polyamide-Functionalized Sodium Alginate for the Removal of Sb(III). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, Article ID: 124106.
https://doi.org/10.1016/j.colsurfa.2019.124106
[44] Bayat, M., Javanbakht, V. and Esmaili, J. (2018) Synthesis of Zeolite/Nickel Ferrite/Sodium Alginate Bionanocomposite via a Co-Precipitation Technique for Efficient Removal of Water-Soluble Methylene Blue Dye. International Journal of Biological Macromolecules, 116, 607-619.
https://doi.org/10.1016/j.ijbiomac.2018.05.012
[45] Nassima, D., Mokhtar, B., Nacer-Eddine, C., Nadia, B. and Larbi, Z. (2016) Enhanced Removal of Cationic Dye by Calcium Alginate/Organobentonite Beads: Modeling, Kinetics, Equilibriums, Thermodynamic and Reusability Studies. International Journal of Biological Macromolecules, 92, 1277-1287.
https://doi.org/10.1016/j.ijbiomac.2016.08.013
[46] 张文良, 夏延致, 桂由刚, 唐茂文. 海藻酸钠/羧甲基纤维素多孔气凝胶吸附阳离子染料性能的研究[J]. 材料科学, 2019, 9(1): 104-114.
[47] Shao, Z.-J., Huang, X.-L., Yang, F., Zhao, W.-F., Zhou, X.-Z. and Zhao, C.-S. (2018) Engineering Sodium Alginate-Based Cross-Linked Beads with High Removal Ability of Toxic Metal Ions and Cationic Dyes. Carbohydrate Polymers, 187, 85-93.
https://doi.org/10.1016/j.carbpol.2018.01.092
[48] Yang, X.X., Li, Y.H., Du, Q.J., Sun, J.K., Chen, L., Hu, S., Wang, Z.H., Xia, Y.Z. and Xia, L.H. (2015) Highly Effective Removal of Basic Fuchsin from Aqueous Solutions by Anionic Polyacrylamide/Graphene Oxide Aerogels. Journal of Colloid and Interface Science, 453, 107-114.
https://doi.org/10.1016/j.jcis.2015.04.042
[49] Mohammadi, A., Daemi, H. and Barikani, M. (2014) Fast Removal of Malachite Green Dye Using Novel Superparamagnetic Sodium Alginate-Coated Fe3O4 Nanoparticles. International Journal of Biological Macromolecules, 69, 447-455.
https://doi.org/10.1016/j.ijbiomac.2014.05.042
[50] Derafa, G. and Zaghouane-Boudiaf, H. (2018) Urtica Dioica Leaves-Calcium Alginate as a Natural, Low Cost and Very Effective Bioadsorbent Beads in Elimination of Dyes from Aqueous Medium: Equilibrium Isotherms and Thermodynamic Studies. International Journal of Biological Macromolecules, 124, 915-921.
https://doi.org/10.1016/j.ijbiomac.2018.11.253
[51] Mohammadi, A., Abdolvand, H. and Isfahani, A. (2020) Alginate Beads Impregnated with Sulfonate Containing Calixarene-Intercalated Layered Double Hydroxides: In Situ Preparation, Characterization and Methylene Blue Adsorption Studies. International Journal of Biological Macromolecules, 146, 89-98.
https://doi.org/10.1016/j.ijbiomac.2019.12.229
[52] Liang, X.X., Ouyang, X.-K., Wang, S.Y., Yang, L.-Y., Huang, F.F., Ji, C. and Chen, X.H. (2019) Efficient Adsorption of Pb(II) from Aqueous Solutions Using Aminopropyltriethoxysilane-Modified Magnetic Attapulgite@chitosan (APTS-Fe3O4/APT@CS) Composite Hydrogel Beads. International Journal of Biological Macromolecules, 137, 741-750.
https://doi.org/10.1016/j.ijbiomac.2019.06.244
[53] Fan, S.L., Zhou, J.R., Zhang, Y.J., Feng, Z.F., Hu, H.Y., Huang, Z.Q. and Qin, Y.B. (2020) Preparation of Sugarcane Bagasse Succinate/Alginate Porous Gel Beads via a Self-Assembly Strategy: Improving the Structural Stability and Adsorption Efficiency for Heavy Metal Ions. Bioresource Technology, 306, Article ID: 123128.
https://doi.org/10.1016/j.biortech.2020.123128
[54] Gao, X.P., Guo, C., Hao, J.J., Zhao, Z., Long, H.M. and Li, M.Y. (2020) Selective Adsorption of Pd(II) by Ion-Imprinted Porous Alginate Beads: Experimental and Density Functional Theory Study. International Journal of Biological Macromolecules, 157, 401-413.
https://doi.org/10.1016/j.ijbiomac.2020.04.153
[55] Qiao, K.L., Tian, W.J., Bai, J., Zhao, J., Du, Z.Y., Song, T.T., Chu, M.L., Wang, L. and Xie, W.L. (2020) Synthesis of Floatable Magnetic Iron/Biochar Beads for the Removal of Chromium from Aqueous Solutions. Environmental Technology & Innovation, 19, Article ID: 100907.
https://doi.org/10.1016/j.eti.2020.100907
[56] Wang, Z.Q., Wu, S.S., Zhang, Y.N., Miao, L.J., Zhang, Y.J. and Wu, A.G. (2020) Preparation of Modified Sodium Alginate Aerogel and Its Application in Removing Lead and Cadmium Ions in Wastewater. International Journal of Biological Macromolecules, 157, 687-694.
https://doi.org/10.1016/j.ijbiomac.2019.11.228
[57] Jiang, H.B., Yang, Y.R., Lin, Z.K., Zhao, B.C., Wang, J., Xie, J. and Zhang, A.P. (2020) Preparation of a Novel Bio-Adsorbent of Sodium Alginate Grafted Polyacrylamide/Graphene Oxide Hydrogel for the Adsorption of Heavy Metal Ion. Science of the Total Environment, 744, Article ID: 140653.
https://doi.org/10.1016/j.scitotenv.2020.140653
[58] Makhado, E., Pandey, S., Modibane, K.D., Kang, M. and Hato, M.J. (2020) Sequestration of Methylene Blue Dye Using Sodium Alginate Poly(acrylic acid)@ZnO Hydrogel Nanocomposite: Kinetic, Isotherm, and Thermodynamic Investigations. International Journal of Biological Macromolecules, 162, 60-73.
https://doi.org/10.1016/j.ijbiomac.2020.06.143