维持性血液透析患者尿酸水平与死亡风险的研究进展
Research Progress on Uric Acid Level and Risk of Death in Maintenance Hemodialysis Patients
DOI: 10.12677/ACM.2021.113150, PDF, HTML, XML, 下载: 407  浏览: 547 
作者: 张小丽, 雒 华, 马 玉, 高爱民*:延安大学附属医院肾内科,陕西 延安
关键词: 尿酸全因死亡心血管死亡Uric Acid All-Cause Death Cardiovascular Death
摘要: 目的:了解维持性血液透析患者尿酸水平与死亡风险的关系。方法:分别以“尿酸”、“全因死亡”、“心血管死亡”为检索词检索Pubmed、中国知网(CNKI)数据库,获取并阅读相关文献,从炎症、营养、心血管死亡风险等方面进行综述。结果:在维持性血液透析患者中,基线血尿酸水平的降低与全因和心血管死亡的风险增加密切相关。结论:合理地管理尿酸水平在降低维持性血液透析患者死亡风险方面具有重要的临床意义。
Abstract: Objective: To investigate the relationship between uric acid level and risk of death in maintenance hemodialysis patients. Methods: “Uric acid”, “all-cause death” and “cardiovascular death” were used to search Pubmed and CNKI database. The related literatures were obtained and reviewed from the aspects of inflammation, nutrition and cardiovascular death risk. Results: In maintenance hemodialysis patients, the decrease of baseline serum uric acid levels was closely related to the increased risk of all-cause and cardiovascular death. Conclusion: Reasonable management of uric acid level has important clinical significance in reducing the risk of death in maintenance hemodialysis patients.
文章引用:张小丽, 雒华, 马玉, 高爱民. 维持性血液透析患者尿酸水平与死亡风险的研究进展[J]. 临床医学进展, 2021, 11(3): 1051-1056. https://doi.org/10.12677/ACM.2021.113150

1. 前言

维持性血液透析(Maintenance hemodialysis, MHD)患者逐年增多,到2017年底,终末期肾脏病患者达290万人,其中MHD患者达52万人较2011年增长2.23倍,近几年平均增长率为14.2% [1]。然而,对于尿酸(Uric acid, UA)高或低水平是否与慢性肾脏病(Chronic kidney disease, CKD)进展或死亡的风险有关,存在争议。因此,本文将针对MHD患者UA水平与死亡风险的关系进行综述。

2. UA在人体中的主要功能

UA根据生理环境具有不同的功能特性 [2]。一方面,UA是一种有效的自由基清除剂和抗氧化剂,可以降低人体内的氧化应激 [3] [4] [5]。在这种情况下,UA的特点是防止内皮酶的氧化失活,并在氧化应激期间保护内皮细胞介导血管扩张的能力 [3] [4]。另一方面,特别是当血UA超过血液中的正常水平时,UA可能会成为一种促氧化剂 [2] [6],实验和临床研究表明,细胞内UA具有促氧化作用:在内皮细胞内,UA降低一氧化氮的生物利用度;在血管平滑肌细胞中,UA促进细胞增殖;在脂肪细胞中,UA刺激NADPH氧化酶依赖的活性氧的产生,并促进胰岛素抵抗 [7]。

3. 血清UA与ATP结合盒转运蛋白亚家族G成员2 (ABCG2)

ABCG2主要表达于近曲小管的官腔膜侧,ABCG2形成同型二聚体后即具备转运UA的活性,ABCG2的功能异常变体是肾脏和肠道中的UA排出转运蛋白,其表达或功能障碍会导致UA排出减少,ABCG2功能障碍可能会通过UA和尿毒症毒素的积累以及炎症的加速和自噬的抑制而影响临床结果 [8]。而ABCG2是尿毒症毒素吲哚酚硫酸盐(IS)的主要转运蛋白 [9],吲哚硫酸盐通过减少一氧化氮的产生和增加氧化应激而导致内皮功能障碍 [10] [11]。高浓度的UA (0.5 mmol/L相当于8.4 mg/dL)可以减轻内皮功能障碍,抑制吲哚酚硫酸盐诱导的氧化应激和UA保护一氧化氮的产生 [12]。通过基因变异估计的ABCG2功能障碍与血清UA水平呈显著正相关(r = 0.508, P < 0.05) [8]。尿毒症患者高水平的UA可能是一种代偿机制,可以抵消吲哚酚硫酸盐等尿毒症毒素的氧化损伤和血管毒性 [12],从而减少因氧化应激所致的心血管死亡事件,降低病死率。

4. 血清UA与营养

研究发现30%~50%的血液透析患者有不同程度的营养不良,患者的营养状态与住院事件和死亡事件高度相关 [13]。长时间随访发现UA的动态变化与营养状态变化一致,血UA水平的增加伴随着营养状况的改善,可降低患者死亡率 [14]。低UA水平往往与蛋白能量消耗、糖尿病、高龄等伴随存在 [13]。糖尿病本身就是代谢消耗性疾病,其并发症多,导致蛋白质代谢紊乱,加重蛋白质、热量及嘌呤或核苷酸等必须营养物质摄入相对不足引起营养不良 [15] 和UA水平的降低 [16]。蛋白质能量消耗(protein-energy wasting, PEW)是指CKD患者存在的多种营养和代谢异常 [17],与白蛋白、前白蛋白、转铁蛋白、肌酐、胆固醇和碳酸氢盐的血浆浓度有关,低UA往往伴随着低体重指数、低白蛋白水平、低磷,意味着营养不良,而营养不良往往是透析患者死亡的独立危险因素。

5. 血清UA与炎症

越来越多的证据表明UA是一种炎症因子 [18] [19] [20]。UA单钠晶体刺激痛风炎症也是公认的 [21] [22]。研究表明,UA可以激活近端肾小管上皮细胞中的NF-kB信号 [23] [24],NF-kB信号作为一个关键的转录因子,通过调节细胞因子和趋化因子的表达来介导炎症 [25]。UA通过激活NF-kB信号通路诱导肾组织炎症细胞浸润和炎症介质的小管表达 [26]。另一方面,UA是一种强大的氧自由基清除剂,具有抗氧化和抗炎作用 [27] [28],总抗氧化能力与较高的血UA水平相关 [29]。高水平的UA可以阻断尿毒症的毒素作用,增加一氧化氮水平,减少线粒体中活性氧的产生,从而改善内皮细胞功能 [30]。低水平的UA患者白蛋白水平较低,hs-CRP水平较高,营养不良可以减少心肌细胞体积和肌原纤维含量,引起纤维蛋白原增加,诱导氧化应激和血管炎症,促进动脉粥样硬化 [31]。低UA血症与MIA综合征(营养不良–炎症–动脉粥样硬化)密切相关 [32] [33]。MIA综合征与HD患者的高死亡率密切相关 [34] [35]。综上两方面,低UA血症促进血液透析患者MIA进展,从而引发高死亡率。

6. UA与全因和心血管死亡风险

尽管在一般人群中,高UA水平与全因和心血管相关死亡风险之间的联系是一致的,但探索UA在终末期肾脏病患者高死亡风险和心血管疾病背景下的作用的研究没有定论 [2]。台湾肾病学会透析登记处针对27,229名血液透析患者的研究发现,血UA水平越低全因和心血管相关死亡率的风险越高 [30],一项来自亚洲的有1738名患者的大型队列研究中,发现UA和全因死亡率之间存在U型关联 [36],而更小规模的研究则发现了J型关联 [37] [38]。高UA会引起氧化应激、内皮功能障碍以及冠状动脉血流缓慢 [39],有研究表明透析患者中,当UA大于6 mg/dL时,UA水平越高则患者的血管钙化及心血管不良事件越高 [40],其机制包括:UA增高会形成结晶沉积在动脉壁上,引起动脉内膜受损;可促进低密度脂蛋白的氧化和脂质过氧化,并与增加的氧自由基参与炎症反应;可促进血小板聚集,介导多种氧化物损伤血管内皮 [41]。白蛋白是常用的营养学指标,亦被认为是尿毒症患者的一种迟发负性炎症蛋白 [42],透析患者的血UA升高及白蛋白下降会加重自身的氧化应激和微炎症状态,从而增加MIA综合征,进一步引起心血管事件 [43]。

7. 结论

综上所述,在MHD患者中,一方面高浓度的UA水平减轻内皮功能障碍,抑制基因功能障碍诱发氧化应激反应和UA保护一氧化氮的产生,抵消炎性反应造成的氧化损伤和血管毒性,从而对MHD患者起到保护作用;另一方面,UA水平的动态变化与营养状态一致,低UA水平往往伴随着多种营养和代谢异常,患者基础状况越差,死亡风险越高。高炎低代谢状态,加重心血管负担,增加MIA综合征(营养不良–炎症–动脉粥样硬化),增加MHD患者死亡风险。然而,由于各种族、各地域针对当地患者个体差异的不同,采用的透析模式不同,尿酸水平对MHD患者全因死亡影响有负相关、J型关联及U型关联三种不同结论,因此需进一步的多中心前瞻性试验来证实这些结论的准确性,此外还需要进一步的基础研究来澄清这些发现背后的确切机制。

NOTES

*通讯作者。

参考文献

[1] 2017全国血液净化病例信息登记报告[EB/OL]. http://www.cnrds.net, 2017.
[2] Zawada, A.M., Carrero, J.J., Wolf, M., Feuersenger, A., Stuard, S., Gauly, A., Winter, A.C., Ramos, R., Fouque, D. and Canaud, B. (2020) Serum Uric Acid and Mortality Risk among Hemodialysis Patients. Kidney International Reports, 5, 1196-1206.
https://doi.org/10.1016/j.ekir.2020.05.021
[3] Murea, M. and Tucker, B.M. (2019) The Physiology of Uric Acid and the Impact of End-Stage Kidney Disease and Dialysis. Seminars in Dialysis, 32, 47-57.
https://doi.org/10.1111/sdi.12735
[4] Becker, B.F. (1993) Towards the Physiological Function of Uric Acid. Free Radical Biology & Medicine, 14, 615-631.
https://doi.org/10.1016/0891-5849(93)90143-I
[5] Cervantes, G.K., Llanas-Cornejo, D. and Husi, H. (2017) CVD and Oxidative Stress. Journal of Clinical Medicine, 6, 22.
https://doi.org/10.3390/jcm6020022
[6] Yu, M.A., Sanchez-Lozada, L.G., Johnson, R.J., et al. (2010) Oxidative Stress with an Activation of the Renin-Angiotensin System in Human Vascular Endothelial Cells as a Novel Mechanism of Uric Acid-Induced Endothelial Dysfunction. Journal of Hypertension, 28, 1234-1242.
https://doi.org/10.1097/HJH.0b013e328337da1d
[7] Park, J.H., Jo, Y. and Lee, J.H. (2020) Renal Effects of Uric Acid: Hyperuricemia and Hypouricemia. The Korean Journal of Internal Medicine, 35, 1291-1304.
https://doi.org/10.3904/kjim.2020.410
[8] Nakashima, A., Ichida, K., Ohkido, I., Yokoyama, K., Matsuo, H., Ohashi, Y., Takada, T., Nakayama, A., Suzuki, H., Shinomiya, N., Urashima, M. and Yokoo, T. (2020) Dysfunctional ABCG2 Gene Polymorphisms Are Associated with Serum Uric Acid Levels and All-Cause Mortality in Hemodialysis Patients. Human Cell, 33, 559-568.
https://doi.org/10.1007/s13577-020-00342-w
[9] Takada, T., Yamamoto, T., Matsuo, H., et al. (2018) Identification of ABCG2 as an Exporter of Uremic Toxin Indoxyl Sulfate in Mice and as a Crucial Factor Influencing CKD Progression. Scientific Reports, 8, Article No. 11147.
https://doi.org/10.1038/s41598-018-29208-w
[10] Latif, W., Karaboyas, A., Tong, L., Winchester, J.F., Arrington, C.J., Pisoni, R.L., Marshall, M.R., Kleophas, W., Levin, N.W., Sen, A., et al. (2011) Uric Acid Levels and All-Cause and Cardiovascular Mortality in the Hemodialysis Population. Clinical Journal of the American Society of Nephrology, 6, 2470-2477.
https://doi.org/10.2215/CJN.00670111
[11] Longenecker, J.C., Coresh, J., Powe, N.R., Levey, A.S., Fink, N.E., Martin, A. and Klag, M.J. (2002) Traditional Cardiovascular Disease Risk Factors in Dialysis Patients Compared with the General Population: The Choice Study. Journal of the American Society of Nephrology, 13, 1918-1927.
https://doi.org/10.1097/01.ASN.0000019641.41496.1E
[12] Hsu, W.-L., Li, S.-Y., Liu, J.-S., Huang, P.-H., Lin, S.-J., Hsu, C.-C., Lin, Y.-P., Tarng, D.-C. and Vanholder, R. (2017) High Uric Acid Ameliorates Indoxyl Sulfate-Induced Endothelial Dysfunction and Is Associated with Lower Mortality among Hemodialysis Patients. Toxins, 9, 20.
https://doi.org/10.3390/toxins9010020
[13] Bitker, L., Bayle, F., Yonis, H., et al. (2016) Prevalence and Risk Factors of Hypotension Associated with Preload-Dependence during Intermittent Hemodialysis in Critically Ill Patients. Critical Care, 20, 44.
https://doi.org/10.1186/s13054-016-1227-3
[14] Beberashvili, I., Erlich, A., Azar, A., et al. (2016) Longitudinal Study of Serum Uric Acid, Nutritional Status, and Mortality in Maintenance Hemodialysis Patients. Clinical Journal of the American Society of Nephrology, 11, 1015-1023.
https://doi.org/10.2215/CJN.10400915
[15] 张瑜凌, 王梦婧, 俞苹, 等. 维持性血液透析患者饮食蛋白摄入与营养状况的相关研究[J]. 中华肾脏病杂志, 2016, 32(3): 161-166.
[16] 刘艳, 李晓, 任红, 黄晓敏, 刘思梦, 陈楠. 腹膜透析患者血尿酸水平与透析充分性及营养状况的关系研究[J]. 中国血液净化, 2016, 15(4): 214-218.
[17] Carrero, J.J., Chmielewski, M., Axelsson, J., Snaedal, S., Heimbüger, O., Barany, P., et al. (2008) Muscle Atrophy, Inflammation and Clinical Outcome in Incident and Prevalent Dialysis Patients. Clinical Nutrition, 27, 557-564.
https://doi.org/10.1016/j.clnu.2008.04.007
[18] Zoccali, C., Maio, R., Mallamaci, F., Sesti, G. and Perticone, F. (2006) Uric Acid and Endothelial Dysfunction in Essential Hypertension. Journal of the American Society of Nephrology, 17, 1466-1471.
https://doi.org/10.1681/ASN.2005090949
[19] di Giovine, F.S., Malawista, S.E., Thornton, E. and Duff, G.W. (1991) Urate Crystals Stimulate Production of Tumor Necrosis Factor Alpha from Human Blood Monocytes and Synovial Cells. Cytokine mRNA and Protein Kinetics, and Cellular Distribution. Journal of Clinical Investigation, 87, 1375-1381.
https://doi.org/10.1172/JCI115142
[20] Kang, D.H., Park, S.K., Lee, I.K. and Johnson, R.J. (2005) Uric Acid-Induced C-Reactive Protein Expression: Implication on Cell Proliferation and Nitric Oxide Production of Human Vascular Cells. Journal of the American Society of Nephrology, 16, 3553-3562.
https://doi.org/10.1681/ASN.2005050572
[21] Chen, C.J., Shi, Y., Hearn, A., Fitzgerald, K., Golenbock, D., et al. (2006) MyD88-Dependent IL-1 Receptor Signaling Is Essential for Gouty Inflammation Stimulated by Monosodium Urate Crystals. Journal of Clinical Investigation, 116, 2262-2271.
https://doi.org/10.1172/JCI28075
[22] Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. and Tschopp, J. (2006) Gout-Associated Uric Acid Crystals Activate the NALP3 Inflammasome. Nature, 440, 237-241.
https://doi.org/10.1038/nature04516
[23] Yang, Z., et al. (2010) Uric Acid Increases Fibronectin Synthesis through Upregulation of Lysyl Oxidase Expression in Rat Renal Tubular Epithelial Cells. American Journal of Physiology-Renal Physiology, 299, F336-F346.
https://doi.org/10.1152/ajprenal.00053.2010
[24] Han, H.J., Lim, M.J., Lee, Y.J., Lee, J.H., Yang, I.S., et al. (2007) Uric Acid Inhibits Renal Proximal Tubule Cell Proliferation via at Least Two Signaling Pathways Involving PKC, MAPK, cPLA2, and NF-kappaB. American Journal of Physiology-Renal Physiology, 292, F373-F381.
https://doi.org/10.1152/ajprenal.00104.2006
[25] Guijarro, C. and Egido, J. (2001) Transcription Factor-KappaB (NF-kappaB) and Renal Disease. Kidney International, 59, 415-424.
https://doi.org/10.1046/j.1523-1755.2001.059002415.x
[26] Zhou, Y., Fang, L., Jiang, L., Wen, P., Cao, H.D., He, W.C., Dai, C.S. and Yang, J.W. (2017) Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway. PLoS ONE, 7, e39738.
https://doi.org/10.1371/journal.pone.0039738
[27] Ames, B.N., Cathcart, R., Schwiers, E., et al. (1981) Uric Acid Pro-Vides an Antioxidant Defense in Humans against Oxidant- and Radical-Caused Aging and Cancer: A Hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 78, 6858-6862.
https://doi.org/10.1073/pnas.78.11.6858
[28] Schreiner, O., Wandel, E., Himmelsbach, F., et al. (2000) Reduced Secretion of Proinflammatory Cytokines of Monosodium Urate Crystal-Stimulated Monocytes in Chronicrenal Failure: An Explanation for Infrequent Gout Episodes in Chronic Renal Failure Patients? Nephrology Dialysis Transplantation, 15, 644-649.
https://doi.org/10.1093/ndt/15.5.644
[29] Kim, S.B., Yang, W.S., Min, W.K., et al. (2000) Reduced Oxidative Stress in Hypoalbuminemic CAPD Patients. Peritoneal Dialysis International, 20, 290-294.
https://doi.org/10.1177/089686080002000304
[30] Hsu, W.-L., Li, S.-Y., Liu, J.-S., et al. (2017) High Uric Acid Amelio Rates Indoxyl Sulfate-Induced Endothelial Dysfunction and Is Associated with Lower Mortality among Hemodialysis Patients. Toxins (Basel), 9, 20.
https://doi.org/10.3390/toxins9010020
[31] Li, M., Ye, Z.-C., Li, C.-M., Zhao, W.-B., Tang, H., Liu, X., Peng, H. and Lou, T.-Q. (2020) Low Serum Uric Acid Levels Increase the Risk of All-Cause Death and Cardiovascular Death in Hemodialysis Patients. Renal Failure, 42, 315-322.
https://doi.org/10.1080/0886022X.2020.1745234
[32] Stenvinkel, P., Heimburger, O., Lindholm, B., et al. (2000) Are There Two Types of Malnutrition in Chronic Renal Failure? Evidence for Relationships between Malnutrition, Inflammation and Atherosclerosis (MIA Syndrome). Nephrology Dialysis Transplantation, 15, 953-960.
https://doi.org/10.1093/ndt/15.7.953
[33] Stenvinkel, P., Heimburger, O., Paultre, F., et al. (1999) Strong Association between Malnutrition, Inflammation, and Atherosclerosis in Chronic Renal Failure. Kidney International, 55, 1899-1911.
https://doi.org/10.1046/j.1523-1755.1999.00422.x
[34] Sueta, D., Hokimoto, S., Sakamoto, K., et al. (2017) Validation of the High Mortality Rate of Malnutrition-Inflammation-Atherosclerosis Syndrome: Community-Based Observational Study. International Journal of Cardiology, 230, 97-102.
https://doi.org/10.1016/j.ijcard.2016.12.072
[35] Akdag, I., Yilmaz, Y., Kahvecioglu, S., et al. (2008) Clinical Value of the Malnutrition-Inflammation-Atherosclerosis Syndrome for Long-Term Prediction of Cardiovascular Mortality in Patients with End-Stage Renal Disease: A 5-Year Prospective Study. Nephron Clinical Practice, 108, c99-c105.
https://doi.org/10.1159/000113526
[36] Bae, E., Cho, H.J., Shin, N., et al. (2016) Lower Serum Uric Acid Level Predicts Mortality in Dialysis Patients. Medicine (Baltimore), 95, e3701.
https://doi.org/10.1097/MD.0000000000003701
[37] Beberashvili, I., Sinuani, I., Azar, A., et al. (2015) Serum Uric Acid as a Clinically Useful Nutritional Marker and Predictor of Outcome in Maintenance Hemodialysis Patients. Nutrition, 31, 138-147.
https://doi.org/10.1016/j.nut.2014.06.012
[38] Suliman, M.E., Johnson, R.J., Garcia-Lopez, E., et al. (2006) J-Shaped Mortality Relationship for Uric Acid in CKD. The American Journal of Kidney Diseases, 48, 761-771.
https://doi.org/10.1053/j.ajkd.2006.08.019
[39] Gagliardi, A.C., Miname, M.H. and Santos, R.D. (2009) Uric Acid: A Marker of Increased Cardiovascular Risk. Atherosclerosis, 202, 11-17.
https://doi.org/10.1016/j.atherosclerosis.2008.05.022
[40] D’marco, L., García, I. and Vega, C. (2012) Uric Acid, Atherosclerosis and Vascular Calcifications in Chronic Kidney Disease. Investigación Clínica, 53, 52-59.
[41] Johnson, R.J., Feig, D.I., Herrera-Acosta, J., et al. (2005) Resurrection of Uric Acid as a Causal Risk Factor in Essential Hypertension. Hypertention, 45, 18-20.
https://doi.org/10.1161/01.HYP.0000150785.39055.e8
[42] Schomig, M., Eisenhandt, A. and Ritz, E. (2000) The Microinflammatory State of Uremia. Blood Purification, 18, 327-332.
https://doi.org/10.1159/000014457
[43] 张莹, 梁剑波, 江丽屏, 黄莹. 维持性透析患者颈动脉斑块形成的影响因素及与心血管疾病的关系[J]. 实用医学杂志, 2017, 33(10): 1540-1543.