失眠与脑血流改变的研究进展
Progress in Insomnia and Change of Cerebral Blood Flow
DOI: 10.12677/IJPN.2021.102007, PDF, HTML, XML, 下载: 480  浏览: 1,592 
作者: 李征, 吕梦頔, 薛 蓉*:天津医科大学总医院神经内科,天津;万亚会:天津医科大学总医院空港医院神经内科,天津
关键词: 睡眠慢性失眠阻塞性睡眠呼吸暂停综合征脑血流Sleep Chronic Insomnia Obstructive Sleep Apnea-Hypopnea Syndrome Cerebral Blood Flow
摘要: 常见的睡眠障碍包括急性失眠、慢性失眠以及阻塞性睡眠呼吸暂停综合征,脑血流的改变包括脑血流的自动调节功能异常以及脑血流量的改变,可能是睡眠障碍的神经影像机制之一,现就失眠与脑血流改变的研究进展进行介绍。
Abstract: Sleep disorders contain acute insomnia, chronic insomnia and obstructive sleep apnea-hypopnea syndrome commonly. The change of cerebral blood flow might be one of neuroimaging mechanisms in sleep disorders, which contains the abnormal cerebral autoregulation and quantitative change in cerebral blood flow. This review aims on introducing the progress in insomnia and change of cere-bral blood flow.
文章引用:李征, 吕梦頔, 万亚会, 薛蓉. 失眠与脑血流改变的研究进展[J]. 国际神经精神科学杂志, 2021, 10(2): 52-57. https://doi.org/10.12677/IJPN.2021.102007

1. 引言

睡眠是昼夜节律主导下的具有促进机体新陈代谢、记忆巩固、维持内环境稳定等功能的人类最重要的生理活动,在人的一生中,睡眠的时间占比达三分之一。人们对睡眠的关注度在逐渐提升,失眠是最主要的一类睡眠障碍疾病。失眠是指非睡眠剥夺状态下出现的入睡困难、睡眠维持困难或对睡眠质量不满意的一类睡眠障碍疾病,往往伴有日间功能受损,上述症状每周出现大于等于3次并持续3个月以上,称作慢性失眠 [1]。世界上约三分之一的人有过失眠的经历 [2]。失眠已成为一种公共卫生问题,2019年新型冠状病毒肺炎席卷全球,一项纳入19万人的Meta分析显示,23.87%的人在重大公共卫生安全事件后新发失眠,并伴发不同程度的焦虑、抑郁状态 [3]。在综合医院的就诊人群中发现,慢性失眠往往伴发一系列心身疾病,比如焦虑状态、抑郁状态、高血压、甲状腺疾病 [4]、睡眠呼吸暂停低通气综合征 [5]、认知功能下降 [6] 等。脑血流是神经元活动的基础,本文分别介绍了脑血流的自动调节功能以及定量改变,总结了睡眠过程中脑血流的改变并探索了失眠及睡眠相关呼吸疾病中脑血流的改变。

2. 脑血流的自动调节功能

脑血流存在自动调节功能,对自动调节功能的评估可以定性反应脑血流的改变。脑血流主要受平均动脉压(Mean artery pressure, MAP)的影响,学者Lassen提出三相曲线,健康成年人的平均动脉压波动在60~160 mmHg,颅内压大约10 mmHg,与此对应脑灌注压在50~150 mmHg水平,脑血流可通过血管收缩及舒张达到自动调节 [7]。血管的收缩和舒张除了受跨壁压的影响,还与交感神经、代谢性因素、内分泌因素有关 [8]。脑血流的改变与神经元的代谢活动之间的关系是双向的,一方面,脑血流的改变影响了神经元的能量代谢环境,导致神经元出现功能障碍。大脑储存的能量非常少,脑神经元依赖稳定的脑血流和供氧,缺血缺氧会不同程度影响着神经元的生理,当脑卒中大动脉堵塞或心脏泵衰竭时,脑血供完全中断超过几分钟就会导致不可恢复的脑损伤和神经元的死亡;当长期慢性缺血缺氧与大脑神经元能量需求不匹配时,容易造成敏感脑区的损伤,从而出现相应的功能障碍,比如血管性痴呆等 [9]。另一方面,神经元的电活动或化学活动调控血管平滑肌达到血流调节的作用,称为功能性充血。神经血管单元(neurovascular coupling unit, NVU)这一概念在2001年首届美国神经疾病和卒中进展小组会议上首次被提出 [10] [11]。神经血管单元由神经元、星形胶质细胞、血脑屏障内皮细胞、血管平滑肌细胞、周细胞和细胞外基质构成 [12]。细胞外基质是一个有利于离子、神经递质和腺苷三磷酸(Adenosine Triphosphate, ATP)等物质扩散的环境,此微环境中常见的影响血管舒缩的神经递质有谷氨酸、一氧化氮、肾上腺素、去甲肾上腺素、5-羟色胺等 [13]。其中,神经元接收氧气和能量的刺激,通过足尾(星形胶质细胞的特殊结构)以电信号或化学信号的方式传递给星形胶质细胞,比如高水平谷氨酸刺激星形胶质细胞内Ca2+水平升高,释放血管活性物质,收缩血管 [14]。同时,星形胶质细胞可产生和释放前列腺素、ATP和一氧化氮等化学物质,使血管收缩 [15],星形胶质细胞的功能在一定程度上反映了神经血管单元的功能。内皮细胞除了参与血脑屏障的组成,也产生内皮素和血栓素 [16],对血管有收缩作用。周细胞在结构上支持内皮细胞,并且在细胞外基质ATP及Ca2+水平升高时,与毛细血管具有协同收缩作用 [17] [18]。上述神经元产生神经递质或血管活性物质等活动多通道调控脑血流的功能称为神经血管耦合(neurovascular coupling, NVC),神经血管耦合功能是脑血流动态调节的微观机制。

3. 脑血流量

脑血流的自动调节功能是机体维持脑血流量相对稳定保证能量供给至大脑神经元的自我保护机制。当脑血流自动调节功能在代偿范围内,脑血流量可能变化不显著,当脑血流自动调节功能失代偿后,脑血流量会出现显著的改变。脑血流量(cerebral blood flow, CBF)是指从动脉到脑组织血管床的血流速度,以每分钟100 g脑组织量化,决定了单位时间内单位脑组织经血管床向神经元输送的氧气和营养物质的传递率 [19]。临床上常用于测量脑血流的方法有:正电子发射型计算机断层显像(Positron Emission Tomography, PET)、单光子发射计算机断层成像术(Single-Photon Emission Computed Tomography, SPECT)、CT灌注成像(Computed Tomography Perfusion, CTP)、经颅多普勒超声(Transcranial Doppler, TCD)、动脉自旋标记技术(Arterial Spin Labeling, ASL)等。PET通过注射18-FDG造影剂,既可以测定脑神经元的代谢,也可以反映脑灌注,临床受限在于注射造影剂以及昂贵的检查费用。SPECT也需要注射示踪剂99 mTc,其反映脑血流的改变与PET结果呈线性关系。CT灌注成像通过测定血管内注射碘造影剂前后的CT衰减值测得脑血流量,同时还可以获得脑血容量、平均通过时间和达峰时间,在临床上被广泛用于急性缺血性卒中缺血半暗带的识别。TCD是通过测量脑血流速度间接反映脑血流量,可以对脑血流进行一个时间段的评估,具有安全、无过敏反应、实时等优势,但是容易受骨骼、血管走行以及操作者手法的影响 [20]。ASL具有安全、无创的特点,近年来被不断推广应用到中枢神经系统疾病的脑血流定量测量中。

4. 正常睡眠周期中的脑血流

在觉醒–睡眠周期中,脑血流是动态变化的,非快动眼睡眠期(Non rapid eye movement sleep, NREM)时全脑血流量相比清醒时下降,进入快动眼睡眠期(Rapid eye movement, REM)后,脑血流量随之增加,至次日清晨恢复到基线水平,在白天任务态时脑血流是增加的,神经元的活动与脑血流量的改变也是平行的 [21]。基于影像学也证实了这一趋势,ASL发现在一天的活动后,双侧海马、杏仁核、中央前回和中央后回的脑血流是显著增加的(P < 0.002),经过一夜睡眠的调整后,脑血流量恢复到基线水平 [22]。PET发现从清醒到入睡,整体脑血流量下降18%,额叶、丘脑、基底节、扣带回 [23]、枕叶、颞叶和海马 [24] 均有脑血流量明显下降的报道。另一方面,与情绪、记忆相关的脑区比如杏仁核、海马的神经元活动被证实是明显增加的 [25]。基于突触稳态的假说,睡眠过程尤其是REM期通过对突触强度的调节促进记忆的有效编码和存储 [26],而脑血流的改变与神经元的功能是耦合的,可以推测脑血流的改变或许通过突触的调节影响了神经元的活动。

5. 失眠的脑血流改变

随着睡眠模式的改变,发挥核心作用的脑区在神经元活动以及脑血流量的改变可能是失匹配的,这种失匹配很可能是慢性失眠患者出现神经功能缺损的病理生理基础。在急性睡眠剥夺后的志愿者中发现双侧海马旁回、梭状回 [27]、丘脑 [22]、右侧前额叶、后顶叶 [28] 的脑血流量出现显著下降。在急性睡眠限制(睡4小时/晚)的研究中发现受试者的额顶叶脑血流量有明显下降,与嗜睡程度相关 [29]。其他研究则发现,急性睡眠剥夺后志愿者枕叶 [30] 等以及岛叶 [22]、前扣带回皮质 [31] 的脑血流量增加。通过TCD测量慢性失眠患者的双侧大脑中动脉流速,并与实时手指血压进行传递函数分析后得出动态脑血流自动调节参数,发现慢性失眠患者存在脑血流的自动调节功能受损 [32]。SPECT报道小样本慢性失眠患者在NREM期时基底节区表现出明显脑血流量的下降,并在失眠治疗后CBF有明显的增加 [33]。上述研究均证实了失眠过程中存在脑血流功能或者定量的异常改变,仍需要大样本数据继续探索脑血流在不同脑区的改变趋势。

阻塞性睡眠呼吸暂停综合征(Obstructive Sleep Apnea-hypopnea Syndrome, OSASH)在人群中发病率很高,有文献报道其在女性的发生率在23%,男性发生率在49% [34],提示睡眠问题往往伴随缺氧的发生。急性缺氧往往伴随二氧化碳分压的升高,脑血管对即刻缺氧较为敏感,低氧与高碳酸血症时,星形胶质细胞内钙离子水平增加,刺激磷脂酶A2和花生四烯酸的释放,通过环氧化酶途径导致血管平滑肌的松弛,从而增加了脑血流 [35]。当动脉二氧化碳分压每增加3~6 mmHg时,脑血量增加0.5%~2.5% [35]。在缺氧事件中脑血流量的改变代表脑血管对于缺氧状态的敏感性和代偿能力。在正常的睡眠期间,脑血管对缺氧的反应性是降低,研究发现长期间断性缺氧会导致脑血管对缺氧的反应性进一步降低,因此OSASH患者无法敏感识别低氧事件,脑血流量失代偿出现下降 [36]。在OSASH患者中不仅发现脑血流自动调节功能的中断 [37],还发现降低的脑血流量与呼吸暂停和低通气指数(Apnea and Hypopnea Index, AHI)相关 [35],并且在经过无创正压通气治疗后脑血流量恢复 [38]。SPECT发现前额叶及右脑岛的静息态脑血流量的降低与OSASH患者REM期呼吸事件相关,左侧感觉运动和颞叶皮层静息态脑血流量的降低与NERM期呼吸事件相关 [39],这也提示不同类型的睡眠障碍中脑血流的改变可能不同。ASL证实OSASH患者左侧小脑、左侧颞叶、右侧额叶、双侧海马旁回 [40] 脑血流量存在降低,且右侧海马旁回CBF与觉醒指数存在显著正相关关系,在双侧额上回发现CBF的增加,这与最长呼吸暂停时间之间存在正相关关系 [40]。在中重度OSASH患者中发现双侧前扣带回和扣带旁回、双侧胼胝体、左侧眶额皮质、右侧丘脑 [41] 区域脑血流量的降低。作为缺血性卒中的独立危险因素之一,在OSASH患者中观察到的脑血流量的改变是否对于卒中事件的发生有意义,或许是今后继续研究的方向之一。

6. 小结

本文介绍了睡眠过程中脑血流的生理改变以及常见失眠障碍中脑血流的改变。脑血流作为神经元活动的基础,其改变可能是失眠病理进程中的神经影像学机制之一,探索脑血流的改变,可以更好地理解睡眠与失眠。

NOTES

*通讯作者。

参考文献

[1] 高和. 《国际睡眠障碍分类》(第三版)慢性失眠障碍的诊断标准[J]. 世界睡眠医学杂志, 2018, 5(5): 555-557.
[2] Ohayon, M.M. (2002) Epidemiology of Insomnia: What We Know and What We Still Need to Learn. Sleep Medicine Reviews, 6, 97-111.
https://doi.org/10.1053/smrv.2002.0186
[3] Cenat, J.M., Blais-Rochette, C., Kokou-Kpolou, C.K., et al. (2021) Prevalence of Symptoms of Depression, Anxiety, Insomnia, Posttraumatic Stress Disorder, and Psychological Distress among Populations Affected by the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. Psychiatry Research, 295, Article ID: 113599.
https://doi.org/10.1016/j.psychres.2020.113599
[4] Pavlova, M.K. and Latreille, V. (2019) Sleep Disorders. The American Journal of Medicine, 132, 292-299.
https://doi.org/10.1016/j.amjmed.2018.09.021
[5] Zhang, Y., Ren, R., Lei, F., et al. (2019) Worldwide and Re-gional Prevalence Rates of Co-Occurrence of Insomnia and Insomnia Symptoms with Obstructive Sleep Apnea: A Sys-tematic Review and Meta-Analysis. Sleep Medicine Reviews, 45, 1-17.
https://doi.org/10.1016/j.smrv.2019.01.004
[6] Borges, C.R., Poyares, D., Piovezan, R., et al. (2019) Alzheimer’s Disease and Sleep Disturbances: A Review. Arquivos de Neuro-Psiquiatria, 77, 815-824.
https://doi.org/10.1590/0004-282x20190149
[7] Lassen, N.A. (1959) Cerebral Blood Flow and Oxygen Con-sumption in Man. Physiological Reviews, 39, 183-238.
https://doi.org/10.1152/physrev.1959.39.2.183
[8] Armstead, W.M. (2016) Cerebral Blood Flow Autoregulation and Dysautoregulation. Anesthesiology Clinics, 34, 465-477.
https://doi.org/10.1016/j.anclin.2016.04.002
[9] Iadecola, C. (2013) The Pathobiology of Vascular Dementia. Neuron, 80, 844-866.
https://doi.org/10.1016/j.neuron.2013.10.008
[10] Iadecola, C. (2017) The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron, 96, 17-42.
https://doi.org/10.1016/j.neuron.2017.07.030
[11] Kim, K.J. and Filosa, J.A. (2012) Advanced in Vitro Approach to Study Neurovascular Coupling Mechanisms in the Brain Microcirculation. The Journal of Physiology, 590, 1757-1770.
https://doi.org/10.1113/jphysiol.2011.222778
[12] Harder, D.R., Zhang, C. and Gebremedhin, D. (2002) Astro-cytes Function in Matching Blood Flow to Metabolic Activity. News in Physiological Sciences, 17, 27-31.
https://doi.org/10.1152/physiologyonline.2002.17.1.27
[13] 马思明, 汪露, 杨静雯, 等. 脑内神经血管耦合功能调控机制的研究进展[J]. 中国脑血管病杂志, 2019, 16(12): 667-672.
[14] Zonta, M., Angulo, M.C., Gobbo, S., et al. (2003) Neuron-to-Astrocyte Signaling Is Central to the Dynamic Control of Brain Microcirculation. Nature Neuro-science, 6, 43-50.
https://doi.org/10.1038/nn980
[15] Gordon, G.R., Choi, H.B., Rungta, R.L., et al. (2008) Brain Metabolism Dictates the Polarity of Astrocyte Control over Arterioles. Nature, 456, 745-749.
https://doi.org/10.1038/nature07525
[16] Emanueli, C., Schratzberger, P., Kirchmair, R., et al. (2003) Paracrine Control of Vascularization and Neurogenesis by Neurotrophins. British Journal of Pharmacology, 140, 614-619.
https://doi.org/10.1038/sj.bjp.0705458
[17] Peppiatt, C.M., Howarth, C., Mobbs, P., et al. (2006) Bidirectional Control of CNS Capillary Diameter by Pericytes. Nature, 443, 700-704.
https://doi.org/10.1038/nature05193
[18] Fernandez-Klett, F., Offenhauser, N., Dirnagl, U., et al. (2010) Pericytes in Capillaries Are Contractile in Vivo, But Arterioles Mediate Functional Hyperemia in the Mouse Brain. Proceedings of the National Academy of Sciences of the United States of America, 107, 22290-22295.
https://doi.org/10.1073/pnas.1011321108
[19] Grade, M., Hernandez Tamames, J.A., Pizzini, F.B., et al. (2015) A Neuroradiologist’s Guide to Arterial Spin Labeling MRI in Clinical Practice. Neuroradiology, 57, 1181-1202.
https://doi.org/10.1007/s00234-015-1571-z
[20] 崔碧霄, 卢洁. 脑血流定量的影像学研究进展[J]. 中华老年心脑血管病杂志, 2019, 21(5): 555-556.
[21] Lenzi, P., Zoccoli, G., Walker, A.M., et al. (1999) Cerebral Blood Flow Regulation in REM Sleep: A Model for Flow-Metabolism Coupling. Archives Italiennes de Biologie, 137, 165-179.
[22] Elvsashagen, T., Mutsaerts, H.J., Zak, N., et al. (2019) Cerebral Blood Flow Changes after a Day of Wake, Sleep, and Sleep Deprivation. Neuroimage, 186, 497-509.
https://doi.org/10.1016/j.neuroimage.2018.11.032
[23] Maquet, P. (1997) Positron Emission Tomography Studies of Sleep and Sleep Disorders. Journal of Neurology, 244, S23-S28.
https://doi.org/10.1007/BF03160568
[24] Braun, A.R., Balkin, T.J., Wesenten, N.J., et al. (1997) Regional Cere-bral Blood Flow throughout the Sleep-Wake Cycle. An H2(15)O Pet Study. Brain, 120, 1173-1197.
https://doi.org/10.1093/brain/120.7.1173
[25] Goldstein, A.N. and Walker, M.P. (2014) The Role of Sleep in Emo-tional Brain Function. Annual Review of Clinical Psychology, 10, 679-708.
https://doi.org/10.1146/annurev-clinpsy-032813-153716
[26] Tononi, G. and Cirelli, C. (2006) Sleep Function and Synaptic Homeostasis. Sleep Medicine Reviews, 10, 49-62.
https://doi.org/10.1016/j.smrv.2005.05.002
[27] Zhou, F., Huang, M., Gu, L., et al. (2019) Regional Cerebral Hy-poperfusion after Acute Sleep Deprivation: A STROBE-Compliant Study of Arterial Spin Labeling fMRI. Medicine (Baltimore), 98, e14008.
https://doi.org/10.1097/MD.0000000000014008
[28] Thomas, M., Sing, H., Belenky, G., et al. (2000) Neural Ba-sis of Alertness and Cognitive Performance Impairments during Sleepiness. I. Effects of 24 h of Sleep Deprivation on Waking Human Regional Brain Activity. Journal of Sleep Research, 9, 335-352.
https://doi.org/10.1046/j.1365-2869.2000.00225.x
[29] Poudel, G.R., Innes, C.R. and Jones, R.D. (2012) Cerebral Perfusion Differences between Drowsy and Nondrowsy Individuals after Acute Sleep Restriction. Sleep, 35, 1085-1096.
https://doi.org/10.5665/sleep.1994
[30] Asplund, C.L. and Chee, M.W. (2013) Time-on-Task and Sleep Depriva-tion Effects Are Evidenced in Overlapping Brain Areas. Neuroimage, 82, 326-335.
https://doi.org/10.1016/j.neuroimage.2013.05.119
[31] Sridharan, D., Levitin, D.J. and Menon, V. (2008) A Criti-cal Role for the Right Fronto-Insular Cortex in Switching between Central-Executive and Default-Mode Networks. Pro-ceedings of the National Academy of Sciences of the United States of America, 105, 12569-12574.
https://doi.org/10.1073/pnas.0800005105
[32] 吕珊, 郭珍妮, 孙晴晴, 等. 慢性失眠患者动态脑血流自动调节功能的研究[J]. 中华神经科杂志, 2017, 50(8): 585-589.
[33] Smith, M.T., Perlis, M.L., Chengazi, V.U., et al. (2005) NREM Sleep Cerebral Blood Flow before and after Behavior Therapy for Chronic Primary Insomnia: Preliminary Single Photon Emission Computed Tomography (SPECT) Data. Sleep Medicine, 6, 93-94.
https://doi.org/10.1016/j.sleep.2004.10.003
[34] Heinzer, R., Vat, S., Marques-Vidal, P., et al. (2015) Prevalence of Sleep-Disordered Breathing in the General Population: The HypnoLaus Study. The Lancet Respiratory Medicine, 3, 310-318.
https://doi.org/10.1016/S2213-2600(15)00043-0
[35] Beaudin, A.E., Hartmann, S.E., Pun, M., et al. (2017) Hu-man Cerebral Blood Flow Control during Hypoxia: Focus on Chronic Pulmonary Obstructive Disease and Obstructive Sleep Apnea. Journal of Applied Physiology (1985), 123, 1350-1361.
https://doi.org/10.1152/japplphysiol.00352.2017
[36] Roach, R.C., Wagner, P.D., Ainslie, P.N., et al. (2017) Translation in Progress: Hypoxia 2017. Journal of Applied Physiology (1985), 123, 922-925.
https://doi.org/10.1152/japplphysiol.00846.2017
[37] Urbano, F., Roux, F., Schindler, J., et al. (2008) Impaired Cerebral Autoregulation in Obstructive Sleep Apnea. Journal of Applied Physiology (1985), 105, 1852-1857.
https://doi.org/10.1152/japplphysiol.90900.2008
[38] Jensen, M., Vestergaard, M.B., Tonnesen, P., et al. (2018) Cerebral Blood Flow, Oxygen Metabolism, and Lactate during Hypoxia in Patients with Obstructive Sleep Apnea. Sleep, 41, zsy001.
https://doi.org/10.1093/sleep/zsy001
[39] Baril, A.A., Gagnon, K., Brayet, P., et al. (2020) Obstructive Sleep Apnea during REM Sleep and Daytime Cerebral Functioning: A Regional Cerebral Blood Flow Study Using High-Resolution SPECT. Journal of Cerebral Blood Flow & Metabolism, 40, 1230-1241.
https://doi.org/10.1177/0271678X18814106
[40] Nie, S., Peng, D.C., Gong, H.H., et al. (2017) Resting Cerebral Blood Flow Alteration in Severe Obstructive Sleep Apnoea: An Arterial Spin Labelling Perfusion fMRI Study. Sleep Breath, 21, 487-495.
https://doi.org/10.1007/s11325-017-1474-9
[41] Innes, C.R., Kelly, P.T., Hlavac, M., et al. (2015) Decreased Re-gional Cerebral Perfusion in Moderate-Severe Obstructive Sleep Apnoea during Wakefulness. Sleep, 38, 699-706.
https://doi.org/10.5665/sleep.4658