肠道菌群紊乱与功能性消化不良关系的研究进展
Research Progress on the Relationship between Intestinal Flora Disorders and Functional Dyspepsia
DOI: 10.12677/ACM.2021.117468, PDF, HTML, XML, 下载: 364  浏览: 602 
作者: 张 硕*, 冯 璐, 张 堃, 刘 璐:青岛大学,山东 青岛;綦 鹏, 魏良洲#:青岛大学附属医院消化内科,山东 青岛;王秀霞:黄岛区人民医院神经内科,山东 青岛
关键词: 功能性消化不良肠道菌群紊乱脑–肠–微生物菌群轴Functional Dyspepsia Gut Microbiota Disorders Brain-Gut-Microbial Axis
摘要: 功能性消化不良(functional dyspepsia, FD)是一种复杂的多因素导致的功能性胃肠病(functional gastrointestinal disorders, FGIDs),其确切的发病机制目前尚不明确。多个研究表明,肠道菌群紊乱(gut microbiota disorders)在FD的发生发展中起到重要作用,是功能性消化不良的重要发病机制。本综述旨在总结近年来对肠道菌群与FD关系的研究进展。
Abstract: Functional dyspepsia (FD) is a complex and multi-factorial functional gastrointestinal disorders (FGIDs), and the exact pathogenesis is unknown currently. Many studies have shown that gut microbiota disorders play an important role in the occurrence and development of FD, and it is an important pathogenesis of functional dyspepsia. This review aims to summarize the research progress on the relationship between gut microbiota and FD in recent years.
文章引用:张硕, 綦鹏, 王秀霞, 冯璐, 张堃, 刘璐, 魏良洲. 肠道菌群紊乱与功能性消化不良关系的研究进展[J]. 临床医学进展, 2021, 11(7): 3225-3231. https://doi.org/10.12677/ACM.2021.117468

1. 引言

功能性消化不良(FD)是一种临床上的常见病、多发病。普通人群中消化不良的患病率为20% [1],消化不良的患者中约80% [2] 行内镜检查时无法解释其症状,属于功能性消化不良(FD)。功能性消化不良(FD)其广义上是一种包括胃肠道多种症状的综合征,主要症状包括上腹痛或灼热感,餐后饱胀感及早期饱腹感。作为一种胃肠道慢性功能性疾病,其病理生理学机制尚不完全清楚,但它可能与脑–肠–微生物菌群轴紊乱、内脏高敏感性、局部微炎症、胃肠道感染及中枢神经系统处理的改变相关,新的研究表明 [3],肠道菌群(gut microbiota)在FD的病理生理过程中可能扮演着重要角色。随着我们对FD病理生理机制研究的深入,未来或许我们会找到对改善功能性消化不良症状和提高患者生活质量的新方法。

2. 肠道菌群

2.1. 肠道菌群的概念

肠道菌群(intestinal bacterial)是寄生于人体肠道内的正常菌群,其在人体中长期存在,且与人体相互依赖。肠道菌群被称为人类身体内的新发现的一个“器官” [4],它的存在好比人体中的另外一个免一个免疫系统,在人体的生长与发育过程中,发挥重要作用。早在300多年前,列文虎克用“小生物”描述其在粪便标本中的发现 [5],这是对于肠道菌群的首次描述。随后,伴随着人类宏基因组学计划的实施 [6],极大地促进了医学领域对肠道微生物的研究。

2.2. 肠道菌群的种类与生理意义

现在我们用更为精确的16S rRNA基因分析 [7],对肠道菌群菌群的种类和数量进行研究。根据研究表明 [8],肠道微生物的数量远远超过人类细胞的数量,目前检测出肠道内微生物有1000多种 [5] [7],这1000多种菌群主要由厚壁菌门和拟杆菌门构成,其余少部分由变形菌门,放线菌门,梭杆菌门和疣微菌门构成,由于环境与饮食等多种因素的影响 [9],肠道菌群比例和构成在不同个体间,同一个体不同生长阶段和不同器官中也不同。肠道菌群在人的一生中都发挥着重要作用,据报道,肠道菌群的参与多种疾病的发生与发展,例如肠道菌群与代谢性疾病密切相关 [10] [11],可通过特殊机制与生物钟协同,使夜间工作者代谢性疾病的患病率更高;肠道菌群的变化与心血管疾病密切相关 [12] [13],可通过产生内毒素造成慢性低度炎症等多种机制参与心脏衰竭、动脉粥样硬化等疾病;肠道菌群还可通过特殊机制 [14] [15] [16],参与慢性肾脏病(CKD)、帕金森综合征、阿尔兹海默病等疾病的发生和发展。最新研究表明 [17],肠道菌群可以与大脑和肠道构成脑–肠–微生物菌群轴,参与IBS、FD等多种消化系统疾病的产生与发展。因此,肠道微生态与脑肠轴之间的调节是双向的。

3. 功能性消化不良

3.1. 功能性消化不良的概念与流行病学

功能性消化不良(functional dyspepsia, FD)是最常见的消化系统疾病,也是临床上最常见的一种功能性胃肠病 (functional gastrointestinal disorders, FGIDs)。由于FD患者病情的反复性与迁延不愈 [18],其生活质量明显降低,同时,所带来的社会医疗成本的增加和生产力的下降也不容忽视。在全球范围内,功能性消化不良女性发病率普遍高于男性,不同地区功能性消化不良的患病率也存在明显差异 [19] [20]:西方国家总体较高,约为10%~40%,亚洲国家较低约为5%~30%,且患病率的差异与各国家对FD的定义的差异无关。

3.2. 功能性消化不良的临床表现与分型

根据罗马III诊断标准 [21],功能性消化不良的主要临床表现为:餐后饱胀,早饱感、上腹痛和上腹灼热,根据主要临床症状可大致分为上腹痛综合征(Epigastric pain syndrome, EPS)和餐后不适综合征(Postprandial distress syndrome, PDS)两组。罗马IV标准 [22] 也继续沿用了这一分组,其中,罗马IV诊断标准 [23] 中将餐后上腹部疼痛,恶心,嗳气统一归于餐后不适综合征(PDS),目的是有效区分PDS和EPS。这种新的分组划入标准,有效降低了PDS和EPS两组的重叠。虽然新的划分标准将部分症状重叠患者划入了PDS组,但表现为上腹痛综合征(EPS)和餐后不适综合征(PDS)重叠的患者仍明显存在 [24] [25],对于此类患者的治疗与研究仍需进一步开展。

3.3. 功能性消化不良的病因

FD的发病机制复杂,目前病因尚不能完全解释。虽FD的病因尚不明确,但大部分学者认为,FD的发生的机制可能为内脏高敏感度、幽门螺杆菌感染、脑肠轴、肠道菌群失调、胃排空异常、精神心理障碍等因素相关 [26] - [32]。据报道 [33],高达50%的FD患者存在胃对进餐的适应性受损,约1/3的FD患者存在胃排空异常(26%表现为胃排空延迟,4%表现为胃排空过快) [29]。近年来,有越来越多的研究显示,十二指肠区域的轻度炎症及黏膜完整性额丧失似乎在FD的发生及发展过程中起到了重要的作用 [34]。

4. 肠道菌群紊乱导致功能性消化不良的作用机制

4.1. 肠道菌群破坏肠道通透性

肠腔–黏膜表面是毒性和免疫原性颗粒面对粘膜相关免疫系统的第一道屏障 [35]。分子通过上皮主要依靠细胞旁途径和跨细胞途径,在细胞旁途径中,一种名为顶端连接复合体的装置可以使肠上皮细胞紧密密封并调节细胞旁通透性,该复合体由紧密连接(TJ),粘附连接和桥粒组成。有研究表明,霍乱弧菌,艰难梭菌和产毒素的大肠杆菌的各种菌株已显示可通过直接的TJ破坏,毒素或蛋白酶的产生以及炎症级联反应的活化来增强肠道通透性。相反,肠道益生菌可以通过增加occludin、audin-3以及ZO-1和ZO-2的表达来促进屏障完整性。另外,肠道菌群的某些其代谢产物也能够破坏肠道通透性,例如,细菌细胞壁(LPS)易位可以诱导免疫和炎症反应,加剧肠屏障损害并进一步增加肠道通透性 [36]。

4.2. 感染后FD

相关研究表明,沙门氏菌、大肠杆菌、空肠弯曲菌、蓝氏贾第鞭毛虫和诺如病毒等病原体导致的急性感染性肠胃炎都与感染后的FD症状有关 [37]。机制可能与导致胃肠道Cajal间质细胞(ICC)和肌间神经节受损有关,其发生率在FD患者中约为10%。

4.3. 脑–肠–微生物菌群轴

肠道菌群和脑肠轴构成一种双向高速通路,相互调节,互相影响 [38]。最新的罗马IV诊断标准中,将功能性胃肠疾病(FGIDS)描述为一种肠脑相互作用疾病,这进一步表明了功能性胃肠疾病与大脑之间的联系 [39]。内脏主要由交感和副交感两种神经控制,交感神经兴奋减少肠道的血供,副交感神经兴奋增加肠道的血供 [40];而迷走神经作为第十对脑神经,是连接胃肠道和大脑副交感神经的关键组成成分 [41]。研究显示,通过观察到切断迷走神经后的小鼠的神经化学行为消失,可以表明迷走神经是暴露于肠道的细菌与大脑之间的主要调节性组成型沟通途径 [42]。而当机体遭受社会心理压力、抑郁等因素影响后,大脑通过下丘脑–垂体–肾上腺轴(HPA)以及迷走神经对肠道进行间接调控,使肠道菌群的组成、肠道免疫力、肠道通透性、肠道神经敏感性等方面都发生显著变化 [43];同时肠道细菌可以合成并释放许多种类的神经递质:例如血清素,儿茶酚胺,谷氨酸,γ-氨基丁酸(GABA)短链脂肪酸(SCFA),5-HT、多巴胺、乙酰胆碱等 [44] [45] [46],这些微生物产生的神经递质可以穿过肠道的粘膜层并通过局部作用于肠道神经系统 [47],经脑–肠轴传导,影响脑部的电生理。这种双向的脑–肠–微生物菌群轴在FD的发生发展中起到了重要作用。

5. FD的肠道菌群相关治疗

5.1. 健康饮食

低脂低糖高纤维素饮食可能有助于FD的防治。多个研究表明 [48] [49] [50] [51],饮食在肠道菌群的组成、丰度等多方面塑造上起着关键作用。随着社会生活水平的不提升,我国人民的饮食结构及生活方式不断典型西方式的高脂肪、高糖、低膳食纤维性饮食靠拢,但事实上,这种生活方式可能会不可逆地减少胃肠道的微生物多样性,并导致部分细菌的耗竭和消失,从而导致肠道菌群失调、慢性炎症等病理改变,诱发FD、IBD、消化道肿瘤等多种疾病 [52]。

5.2. 益生菌

近年来许多针对FD的研究表明,益生菌的使用能够有效改善肠道中菌群组成及丰度,从而缓解FD的症状 [53] [54] [55]。

6. 总结与展望

以往对FD的研究多局限于肠神经、精神应激性等方面,随着罗马IV诊断标准的问世,FD被描述为一种脑肠互动性疾病,这无疑极大地推动了我们对FD的认识与理解。消化菌群一直是一个神秘而极富吸引力的领域,但目前对于肠道微生物的研究主要来自于粪便中的取材,而粪便主要储存在结直肠,结直肠中的菌群种类和数量均远不及小肠,从这方面讲,目前对于肠道微生物的研究仍较局限。与此同时,十二指肠局部发生的以嗜酸性粒细胞和肥大细胞增多为主要特征的慢性持续性炎症已被报告为FD的预测病理生理机制 [33] [56],特别是以细微的嗜酸性粒细胞增多的形式,伴有邻近神经的嗜酸性粒细胞脱颗粒,这也正逐渐成为FD治疗的一个新的靶点 [57]。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Ford, A.-C., Marwaha, A., Sood, R., et al. (2015) Global Prevalence of, and Risk Factors for, Uninvestigated Dyspepsia: A Meta-Analysis. Gut, 64, 1049-1057.
https://doi.org/10.1136/gutjnl-2014-307843
[2] Ford, A.-C., Marwaha, A., Lim, A., et al. (2010) What Is the Prevalence of Clinically Significant Endoscopic Findings in Subjects with Dyspepsia? Systematic Review and Meta-Analysis. Clinical Gastroenterology and Hepatology, 8, 830-837.
https://doi.org/10.1016/j.cgh.2010.05.031
[3] Tziatzios, G., Gkolfakis, P., Papanikolaou, I.-S., et al. (2020) Gut Microbiota Dysbiosis in Functional Dyspepsia. Microorganisms, 8, 691.
https://doi.org/10.3390/microorganisms8050691
[4] Marchesi, J.-R., Adams, D.-H., Fava, F., et al. (2016) The Gut Microbiota and Host Health: A New Clinical Frontier. Gut, 65, 330-339.
https://doi.org/10.1136/gutjnl-2015-309990
[5] Rajilic-Stojanovic, M. and de Vos, W.-M. (2014) The First 1000 Cultured Species of the Human Gastrointestinal Microbiota. FEMS Microbiology Reviews, 38, 996-1047.
https://doi.org/10.1111/1574-6976.12075
[6] Ghurye, J.-S., Cepeda-Espinoza, V. and Pop, M. (2016) Metagenomic Assembly: Overview, Challenges and Applications. Yale Journal of Biology and Medicine, 89, 353-362.
[7] Eckburg, P.-B., Bik, E.-M., Bernstein, C.-N., et al. (2005) Diversity of the Human Intestinal Microbial Flora. Science, 308, 1635-1638.
https://doi.org/10.1126/science.1110591
[8] Ursell, L.-K., Clemente, J.-C., Rideout, J.-R., et al. (2012) The Interpersonal and Intrapersonal Diversity of Human-Associated Microbiota in Key Body Sites. The Journal of Allergy and Clinical Immunology, 129, 1204-1208.
https://doi.org/10.1016/j.jaci.2012.03.010
[9] Tamburini, S., Shen, N., Wu, H.-C., et al. (2016) The Microbiome in Early Life: Implications for Health Outcomes. Nature Medicine, 22, 713-722.
https://doi.org/10.1038/nm.4142
[10] 袁宵潇, 罗飞宏. 肠道菌群与肥胖、糖尿病关系的研究进展[J]. 医学综述, 2020, 26(2): 346-350.
[11] Catry, E., Bindels, L.-B., Tailleux, A., et al. (2018) Targeting the Gut Microbiota with Inulin-Type Fructans: Preclinical Demonstration of a Novel Approach in the Management of Endothelial Dysfunction. Gut, 67, 271-283.
https://doi.org/10.1136/gutjnl-2016-313316
[12] Karlsson, F.-H., Fak, F., Nookaew, I., et al. (2012) Symptomatic Atherosclerosis Is Associated with an Altered Gut Metagenome. Nature Communications, 3, Article No. 31245.
https://doi.org/10.1038/ncomms2266
[13] Jia, Q., Li, H., Zhou, H., et al. (2019) Role and Effective Therapeutic Target of Gut Microbiota in Heart Failure. Cardiovascular Therapeutics, 2019, Article ID: 5164298.
https://doi.org/10.1155/2019/5164298
[14] Zheng, W., He, R., Yan, Z., et al. (2020) Regulation of Immune-Driven Pathogenesis in Parkinson’s Disease by Gut Microbiota. Brain, Behavior, and Immunity, 87, 890-897.
[15] Rahbar, S.-Y., Niknafs, B., Hosseiniyan Khatibi, S.M., et al. (2020) Gut Microbiota; an Overlooked Effect of Phosphate Binders. European Journal of Pharmacology, 868, Article ID: 172892.
[16] Fujii, Y., Khasnobish, A. and Morita, H. (2019) Relationship between Alzheimer’s Disease and the Human Microbiome. In: Alzheimer’s Disease, Codon Publications, Brisbane, Chapter 9.
https://doi.org/10.15586/alzheimersdisease.2019.ch9
[17] Hajjo, H. and Geva-Zatorsky, N. (2020) Gut Microbiota—Host Interactions Now Also Brain-Immune Axis. Current Opinion in Neurobiology, 62, 53-59.
https://doi.org/10.1016/j.conb.2019.10.009
[18] Aziz, I., Palsson, O.-S., Tornblom, H., et al. (2018) Epidemiology, Clinical Characteristics, and Associations for Symptom-Based Rome IV Functional Dyspepsia in Adults in the USA, Canada, and the UK: A Cross-Sectional Population-Based Study. The Lancet Gastroenterology and Hepatology, 3, 252-262.
https://doi.org/10.1016/S2468-1253(18)30003-7
[19] Mahadeva, S. and Ford, A.-C. (2016) Clinical and Epidemiological Differences in Functional Dyspepsia between the East and the West. Neurogastroenterology & Motility, 28, 167-174.
https://doi.org/10.1111/nmo.12657
[20] Napthali, K., Koloski, N., Walker, M.-M., et al. (2016) Women and Functional Dyspepsia. Women’s Health, 12, 241-250.
https://doi.org/10.2217/whe.15.88
[21] Tack, J., Talley, N.-J., Camilleri, M., et al. (2006) Functional Gastroduodenal Disorders. Gastroenterology, 130, 1466-1479.
https://doi.org/10.1053/j.gastro.2005.11.059
[22] 安婧, 刘诗. 功能性胃肠病罗马Ⅳ诊断标准解读[J]. 医学新知杂志, 2017, 27(5): 501-502.
[23] Schmulson, M.-J. and Drossman, D.-A. (2017) What Is New in Rome IV. Journal of Neurogastroenterology and Motility, 23, 151-163.
https://doi.org/10.5056/jnm16214
[24] Talley, N.-J. (2015) Functional Dyspepsia and the Rome Criteria: A Success Story. Neurogastroenterology & Motility, 27, 1052-1056.
https://doi.org/10.1111/nmo.12641
[25] Moayyedi, P., Lacy, B.-E., Andrews, C.-N., et al. (2017) ACG and CAG Clinical Guideline: Management of Dyspepsia. The American Journal of Gastroenterology, 112, 988-1013.
https://doi.org/10.1038/ajg.2017.154
[26] Simren, M., Tornblom, H., Palsson, O.-S., et al. (2018) Visceral Hypersensitivity Is Associated with GI Symptom Severity in Functional GI Disorders: Consistent Findings from Five Different Patient Cohorts. Gut, 67, 255-262.
https://doi.org/10.1136/gutjnl-2016-312361
[27] Suzuki, H. (2018) New Medical Approach to Functional Dyspepsia, from Core Symposium 3, Japan Gastroenterological Association 2015-2017. Digestion, 97, 6-12.
https://doi.org/10.1159/000484029
[28] Powell, N., Walker, M.-M. and Talley, N.-J. (2017) The Mucosal Immune System: Master Regulator of Bidirectional Gut-Brain Communications. Nature Reviews Gastroenterology & Hepatology, 14, 143-159.
https://doi.org/10.1038/nrgastro.2016.191
[29] Nee, J. and Iturrino, J. (2019) Gastroparesis versus Functional Dyspepsia: Still Running on Emptying. Digestive Diseases and Sciences, 64, 1064-1066.
https://doi.org/10.1007/s10620-019-5466-4
[30] Koduru, P., Irani, M. and Quigley, E.M.M. (2018) Definition, Pathogenesis, and Management of That Cursed Dyspepsia. Clinical Gastroenterology and Hepatology, 16, 467-479.
https://doi.org/10.1016/j.cgh.2017.09.002
[31] Jones, M.-P., Tack, J., Van Oudenhove, L., et al. (2017) Mood and Anxiety Disorders Precede Development of Functional Gastrointestinal Disorders in Patients But Not in the Population. Clinical Gastroenterology and Hepatology, 15, 1014-1020.
https://doi.org/10.1016/j.cgh.2016.12.032
[32] Labanski, A., Langhorst, J., Engler, H., et al. (2020) Stress and the Brain-Gut Axis in Functional and Chronic-Inflammatory Gastrointestinal Diseases: A Transdisciplinary Challenge. Psychoneuroendocrinology, 111, Article ID: 104501.
https://doi.org/10.1016/j.psyneuen.2019.104501
[33] Tack, J. and Camilleri, M. (2018) New Developments in the Treatment of Gastroparesis and Functional Dyspepsia. Current Opinion in Pharmacology, 43, 111-117.
https://doi.org/10.1016/j.coph.2018.08.015
[34] Tack, J. and Carbone, F. (2017) Functional Dyspepsia and Gastroparesis. Current Opinion in Gastroenterology, 33, 446-454.
https://doi.org/10.1097/MOG.0000000000000393
[35] Barbara, G., Feinle-Bisset, C., Ghoshal, U.-C., et al. (2016) The Intestinal Microenvironment and Functional Gastrointestinal Disorders. Gastroenterology, 150, 1305-1318.
https://doi.org/10.1053/j.gastro.2016.02.028
[36] Karl, J.-P., Margolis, L.-M., Madslien, E.-H., et al. (2017) Changes in Intestinal Microbiota Composition and Metabolism Coincide with Increased Intestinal Permeability in Young Adults under Prolonged Physiological Stress. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 312, G559-G571.
[37] Futagami, S., Itoh, T. and Sakamoto, C. (2015) Systematic Review with Meta-Analysis: Post-Infectious Functional Dyspepsia. Alimentary Pharmacology & Therapeutics, 41, 177-188.
https://doi.org/10.1111/apt.13006
[38] Cryan, J.-F., O’Riordan, K.-J., Cowan, C.S.M., et al. (2019) The Microbiota-Gut-Brain Axis. Physiological Reviews, 99, 1877-2013.
https://doi.org/10.1152/physrev.00018.2018
[39] Drossman, D.-A. (2016) Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV. Gastroenterology, 150, 1262-1279.
https://doi.org/10.1053/j.gastro.2016.02.032
[40] Galura, G.-M., Chavez, L.-O., Robles, A., et al. (2019) Gastroduodenal Injury: Role of Protective Factors. Current Gastroenterology Reports, 21, 34.
https://doi.org/10.1007/s11894-019-0701-x
[41] Komanduri, M., Gondalia, S., Scholey, A., et al. (2019) The Microbiome and Cognitive Aging: A Review of Mechanisms. Psychopharmacology (Berl.), 236, 1559-1571.
https://doi.org/10.1007/s00213-019-05231-1
[42] Bravo, J.-A., Forsythe, P., Chew, M.-V., et al. (2011) Ingestion of Lactobacillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve. Proceedings of the National Academy of Sciences of the United States of America, 108, 16050-16055.
https://doi.org/10.1073/pnas.1102999108
[43] Aizawa, E., Tsuji, H., Asahara, T., et al. (2016) Possible Association of Bifidobacterium and Lactobacillus in the Gut Microbiota of Patients with Major Depressive Disorder. Journal of Affective Disorders, 202, 254-257.
https://doi.org/10.1016/j.jad.2016.05.038
[44] Cryan, J.-F. and Dinan, T.-G. (2012) Mind-Altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nature Reviews Neuroscience, 13, 701-712.
https://doi.org/10.1038/nrn3346
[45] Foster, J.-A. and McVey Neufeld, K.A. (2013) Gut-Brain Axis: How the Microbiome Influences Anxiety and Depression. Trends in Neurosciences, 36, 305-312.
https://doi.org/10.1016/j.tins.2013.01.005
[46] Mazzoli, R. and Pessione, E. (2016) The Neuro-Endocrinological Role of Microbial Glutamate and GABA Signaling. Frontiers in Microbiology, 7, Article No. 1934.
https://doi.org/10.3389/fmicb.2016.01934
[47] Dinan, T.G. and Cryan, J.-F. (2017) Brain-Gut-Microbiota Axis and Mental Health. Psychosomatic Medicine, 79, 920-926.
https://doi.org/10.1097/PSY.0000000000000519
[48] De Filippo, C., Cavalieri, D., Di Paola, M., et al. (2010) Impact of Diet in Shaping Gut Microbiota Revealed by a Comparative Study in Children from Europe and Rural Africa. Proceedings of the National Academy of Sciences of the United States of America, 107, 14691-14696.
https://doi.org/10.1073/pnas.1005963107
[49] Wu, G.-D., Chen, J., Hoffmann, C., et al. (2011) Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science, 334, 105-108.
https://doi.org/10.1126/science.1208344
[50] De Filippo, C., Di Paola, M., Ramazzotti, M., et al. (2017) Diet, Environments, and Gut Microbiota. A Preliminary Investigation in Children Living in Rural and Urban Burkina Faso and Italy. Frontiers in Microbiology, 8, Article No. 1979.
https://doi.org/10.3389/fmicb.2017.01979
[51] Schnorr, S.-L., Candela, M., Rampelli, S., et al. (2014) Gut Microbiome of the Hadza Hunter-Gatherers. Nature Communications, 5, Article No. 3654.
https://doi.org/10.1038/ncomms4654
[52] Sonnenburg, E.-D., Smits, S.-A., Tikhonov, M., et al. (2016) Diet-Induced Extinctions in the Gut Microbiota Compound over Generations. Nature, 529, 212-215.
https://doi.org/10.1038/nature16504
[53] Nakae, H., Tsuda, A., Matsuoka, T., et al. (2016) Gastric Microbiota in the Functional Dyspepsia Patients Treated with Probiotic Yogurt. BMJ Open Gastroenterology, 3, e109.
https://doi.org/10.1136/bmjgast-2016-000109
[54] Igarashi, M., Nakae, H., Matsuoka, T., et al. (2017) Alteration in the Gastric Microbiota and Its Restoration by Probiotics in Patients with Functional Dyspepsia. BMJ Open Gastroenterology, 4, e144.
https://doi.org/10.1136/bmjgast-2017-000144
[55] Urita, Y., Goto, M., Watanabe, T., et al. (2015) Continuous Consumption of Fermented Milk Containing Bifidobacterium bifidum YIT 10347 Improves Gastrointestinal and Psychological Symptoms in Patients with Functional Gastrointestinal Disorders. Bioscience of Microbiota, Food and Health, 34, 37-44.
https://doi.org/10.12938/bmfh.2014-017
[56] Talley, N.-J. (2017) Functional Dyspepsia: Advances in Diagnosis and Therapy. Gut and Liver, 11, 349-357.
https://doi.org/10.5009/gnl16055
[57] Walker, M.-M., Aggarwal, K.-R., Shim, L.-S., et al. (2014) Duodenal Eosinophilia and Early Satiety in Functional Dyspepsia: Confirmation of a Positive Association in an Australian Cohort. Journal of Gastroenterology and Hepatology, 29, 474-479.
https://doi.org/10.1111/jgh.12419