锂硫电池有机硫聚合物正极材料研究进展
Research Progress of Organic Sulfur Polymer Cathode Materials for Lithium-Sulfur Batteries
DOI: 10.12677/JAPC.2021.103005, PDF, HTML, XML, 下载: 656  浏览: 2,666  国家自然科学基金支持
作者: 钱思逸, 蒋玉卓, 曹宇锋:南通大学化学化工学院,江苏 南通;钱 涛, 刘 杰:南通大学化学化工学院,江苏 南通;苏州大学能源学院,江苏 苏州;晏成林:苏州大学能源学院,江苏 苏州
关键词: 有机硫聚合物正极材料锂硫电池Organic Sulfur Polymers Cathode Materials Lithium-Sulfur Batteries
摘要: 锂–硫(Li-S)电池能量密度高,成本低,十分具有替代目前的商用锂离子电池的潜力。然而在电池工作时,多硫化物的穿梭效应极大地缩短了电池的循环寿命。近年来,硫共聚策略被认为是提高Li-S电池稳定性的一种创新而有效的方法,在该策略中,环状硫被熔融成线型,随后与可聚合的连接单体共聚形成稳定的有机硫聚合物。由于硫与共聚物骨架之间形成强共价键,因此在循环时可以有效地抑制多硫化物的溶解。本文综述了锂硫电池有机硫共聚物正极材料方面的相关研究进展。
Abstract: Lithium-sulfur (Li-S) batteries have the potential to replace current commercial lithium-ion batter-ies because of their high energy density and low cost. However, the shuttle effect of polysulfide greatly shortens the cycle life of the battery in operation. In recent years, the sulfur copolymeriza-tion strategy has been considered as an innovative and effective method to improve the stability of Li-S batteries. In this strategy, the cyclic sulfur is fused into a linear form and then copolymerized with the polymerizable linking monomer to form a stable organic sulfur polymer. Because of the strong covalent bond between sulfur and the copolymer skeleton, the dissolution of polysulfide can be effectively inhibited during cycling. In this paper, the research progress of organic sulfur copol-ymer cathode materials for lithium-sulfur batteries is reviewed.
文章引用:钱思逸, 蒋玉卓, 曹宇锋, 钱涛, 晏成林, 刘杰. 锂硫电池有机硫聚合物正极材料研究进展[J]. 物理化学进展, 2021, 10(3): 41-50. https://doi.org/10.12677/JAPC.2021.103005

1. 引言

近年来,全球能源需求的不断增长对高能量密度、低成本及长寿命的储能设备提出更高要求,开发先进的储能系统成为当代的主要技术和科学挑战 [1] [2] [3]。迄今为止,锂离子电池(LIB)是最成熟的技术 [4] [5] [6] [7]。但是其最高能量密度已达到理论极限 [8],很难满足新兴的电动和混合动力汽车的需求。因此,开发能量密度更高的电池系统引起了广泛的关注 [9] [10] [11]。

以金属锂作为负极,硫作正极的Li-S电池由于其低成本和高理论能量密度(2600 Wh/kg)成为最有前景的候选者之一 [12] - [17]。典型Li-S电池的可逆反应为: 2 Li + + 2 e + xS Li 2 S x ( 1 x 8 ) [18],其放电过程的转化可以简单地表示如下: S 8 Li 2 S 8 Li 2 S 6 / Li 2 S 4 Li 2 S 2 / Li 2 S [19]。相应的放电曲线通常由两个电压平台组成,其中2.3 V时的高电压平台对应环状S8开环还原为长链多硫化锂(Li2Sx, 4 < x ≤ 8)的过程,而2.1 V的低电压平台与长链多硫化物进一步转化为Li2S2和Li2S有关 [20]。Li-S电池在实际应用中也面临着诸多挑战:1) 硫和硫化锂的绝缘性使得活性材料的利用率降低;2) 由于硫和硫化锂的密度分别为2.06 g/cm3和1.66 g/cm3,因而活性物质在放电/充电过程中的体积变化高达80%;3) 循环过程中多硫化物溶解和迁移会造成严重的穿梭效应,大大降低正极的利用率,加速电池容量的衰退 [8] [21];4) 锂离子不均匀沉积形成的锂枝晶可能会导致循环过程中发生短路。其中穿梭效应的影响最为突出,因为它直接关系到Li-S电池的能量密度和寿命。传统锂离子电池的容量发挥可达到理论容量的90%,而Li-S电池的容量发挥普遍低于理论值的70% [22]。

抑制穿梭效应主要有两种策略,一种是阻止多硫化物向电解质扩散,另一种是阻止多硫化物向阳极迁移。第一种策略主要是在正极或电解质中加入功能材料,例如碳纳米材料(碳纳米管、石墨烯、碳纳米纤维和多孔碳) [23] [24] [25] [26]、聚合物 [27] [28] [29]、金属氧化物 [30] [31] [32]、离子液体等。其工作机理是将多硫化物限制在多孔材料的孔隙中,或者是通过化学键合/物理吸附将多硫化物固定在功能材料的表面,以及降低多硫化物在电解质中的溶解度。第二种策略主要是通过修饰隔膜或着插入中间层来阻碍多硫化物的扩散 [33]。

到目前为止已经有许多文章探究过了抑制或避免多硫化物溶解和穿梭的方法。科学家最先将硫物理封装在各种导电框架中,然而,由于活性位点和内部空间有限,正极材料的结构会随着多硫化物的积累而逐渐瓦解。尽管这些复合正极可以在初始充放电循环中展现很好的稳定性,但是由于不断的充放电循环仍会存在多硫化物的溶解,电池的电化学性能通常会在之后的循环中迅速下降。Guo等人 [34] 成功地将S2-4小分子限制在微孔碳中,表现出高的电化学活性和新的电化学行为,仅在约1.9 V处有一个放电平台,表明未生成长链多硫化物。而可溶性长链多硫化物的缺失有利于电池稳定性的提升。然而由于难以控制微孔分布,同时复合材料中硫含量相对较低,所以难以实现大规模应用。自从Wang等 [35] 首次设计出分子水平的导电聚合物/硫复合材料并将其作为活性正极应用于Li-S电池以来,共聚策略在Li-S体系中受到了越来越多的关注 [36] [37] [38] [39]。在自然环境下,元素硫主要以具有八个硫原子的环状分子形式存在(S8),一旦加热到159℃,S8单体就会发生开环,并形成具有端自由基的线性多硫烷。随着加热温度的持续升高,在发生聚合和解聚反应的过程中生成了具有8~35个硫原子的聚合硫 [37] [40]。与不同的共聚单体共聚可以获得化学性能稳定的材料,并且碳骨架与硫之间的强共价键可以在一定程度上抑制长链多硫化物的溶解 [37]。这些有机硫聚合物被证实能够有效地改善Li-S电池的性能。

很多综述都总结了与Li-S电池的硫正极、负极和电解质有关的问题 [15] [18] [41] [42] [43] [44],但都没有讨论过有机硫共聚物正极在锂硫电池中的应用。这里我们总结了一些关于硫和不同单体(包括烯/炔烃、硫醇和腈类等)生成的共聚物作为Li-S电池的活性阴极的最新进展,综述了一些掺杂元素的新型聚合硫材料。

2. 烯烃/炔烃衍生的有机硫聚合物

元素硫与各种不饱和分子之间共聚生成富硫共聚物的方法已经得到了广泛研究。这些不饱和分子可以在更高的温度下裂解不饱和键,并与开环硫共聚 [45] [46] [47] [48]。不饱和烃(如烯烃和炔烃)是获得C-S共聚物的最简单、最常用的有机物,复杂的交联网络确保了硫在共聚物中的共价结合。在电化学锂化过程中高阶多硫化物转化为低阶多硫化物,并在充电过程中转变为-Sx-结构,遵循这一原理,共聚物的锂化/脱锂机理与单质硫基本相似,放电过程的最终产物是R-Li和Li2S [37] [49]。

Pyun的课题组 [37] 直接将元素硫与乙烯基单体共聚,以合成含硫量极高的聚合物材料(聚S-r-DIB)。方法是将1,3-二异丙烯基苯(DIB)直接溶解在高于159℃的熔融硫中,并在185℃下进行S8与乙烯基单体的开环聚合,无需任何引发剂或有机溶剂(见图1(a)) [37]。与传统的硫正极相比,以聚S-r-DIB作为正极材料的Li-S电池具有更好的循环能力和容量保持率。CV结果表明聚S-r-DIB的电化学活性和元素硫相似,因此其电化学行为也与S8相似(见图1(b)) [37]。2.3~2.4 V内的峰与高阶有机硫锂和Li2Sx的形成有关(4 < x ≤ 8),持续放电转化为最终产物有机硫锂、Li2S3和Li2S2 (见图1(d)) [38],对应于2.0~2.1 V的另一个峰。所得Li-S电池在0.1 C时的初始放电容量为1100 mAh/g,但100次循环后容量只有初始容量的74.8%。通过优化正极,可以进一步提高初始容量并且抑制容量衰减 [38]。获得的Li-S电池初始容量达到1225 mAh/g,在100和300次循环后仍分别保持1005 mAh/g和817 mAh/g,库仑效率始终为99% (见图1(c)) [38]。

Figure 1. (a) Synthetic scheme of stable poly (S-r-DIB); (b) CV curves of pure sulfur (solid black line) and poly (S-r-DIB) (10 wt% DIB, open circles) at a scan rate of 20 μV/s [37]; (c) Cycling performance of Li-S batteries based on S-r-DIB cathodes with different sulfur contents; (d) Supposed electrochemistry of poly (S-r-DIB) copolymers [38]

图1. (a) 稳定的聚S-r-DIB的合成示意图;(b) 纯硫(黑色实线)和聚S-r-DIB (10 wt% DIB,空心圆)在20 μV/s扫描速率下的循环伏安曲线 [37];(c) 采用不同硫含量的聚S-r-DIB正极的锂硫电池的循环性能;(d) 聚S-r-DIB假设的电化学机制 [38]

Zentel等 [50] 报道了一种新型C-S共聚物,其一个链段与单质硫相容,另一个链段与烯丙基封端的聚(3-己基噻吩-2,5-二基) (P3HT)相容。Zentel等详细研究了P3HT及其与硫的复合物的结构,并证实了硫与P3HT之间为共价连接。S-P3HT的NMR光谱表明硫没有与芳族噻吩环或脂族侧链发生明显的副反应。S-P3HT正极循环100次后,容量仍可以达到838 mAh/g。

此外,炔烃也可与元素硫共聚形成与烯烃相似的富硫聚合物材料。Sun和Meng等 [51] 通过1,3-二乙炔基苯(DEB)和熔融硫的共聚反应制备了含硫量高的新型聚合物阴极材料,该材料具有笼状的半互穿网络(semi-IPN)结构。1HNMR表明共聚后DEB中的C≡C三键完全转化为C-C单键。特殊的笼状结构有助于抑制多硫化物的溶解和扩散。

3. 硫醇衍生的有机硫聚合物

除不饱和烃外,硫醇有机物也可以通过巯基与硫的共价作用形成富硫共聚物。当温度高于180℃时,可以通过环状S8的开环聚合反应在巯基表面获得线性多硫醚 [52]。这些有机分子本身并不能聚合,但是可以通过巯基和硫自由基反应,与熔融硫形成共聚物,使得硫均匀地分布在聚合物中。巯基–硫聚合物作为正极时充放电机理与不饱和烃–硫共聚物类似。Park等人 [53] 首次将开环硫浸渍到多孔TTCA骨架中,线性硫醚末端的硫基通过与巯基共价作用形成三维互联的富硫聚合物(S-TTCA)。拉曼光谱显示S8与TTCA晶体中的巯基反应形成了S-S键,热重分析(TGA)显示传统S-C骨架中S的重量损失始于180℃左右,在280℃时结束,表明小分子S与TTCA骨架之间的共价结合。S-TTCA的总含S量为63 wt%。由于循环过程多硫化物显著减少,TTCA骨架正极在循环450周后容量为850 mAh/g,容量损失小于17%。为了进一步增加硫含量,同时更好地将可溶性多硫化物限制在骨架中,Choi等 [54] 通过正交合成方法制备了一种硫浸渍的苯并恶嗪聚合物(S-BOP),循环1000次后容量仅损失7.3%。这表明只要使用特定的单体,就可以获得具有所需性能的共聚物。

尽管逆硫化方法可以给共聚物提供相对较高的载硫量,但是线性多硫醚中嵌入大量的硫原子会导致长链多硫醚的生成,限制了稳定性的提高。为此,我们将元素硫共价结合到巯基官能化的石墨烯纳米片(S-GSH)上,并证实了当八个硫原子嵌入共聚物时,主要的中间产物是短链多硫化物(Li2Sx,1 ≤ x ≤ 4) [55],并由此提出了一种新的S-S键断裂机制。通过密度泛函理论(DFT)计算,系统地研究了S-GSH的锂化过程。中间的S-S键在聚合的硫链中最先断裂,并且当嵌入另外两个锂离子时,中间体最可能是Li2S4。得到的Li2S4在随后的锂化过程进一步转化为Li2S2或Li2S和Li2S3,最终变成硫化锂。为了验证S-GSH充放电过程锂化机制,我们进行了原位紫外吸收光谱表征,自行设计了原位表征电池模具。在S-GSH循环期间,并未在原位吸收光谱一阶导曲线中检测到长链多硫化物,而传统硫正极材料的原位紫外一阶导曲线连续从560 nm移至480 nm,这是由于多硫化锂从高阶到低阶的转变,这一结果表明S-GSH在放电过程中主要产生的是短链多硫化物。S-GSH正极在循环450周后,电池容量损失仅为13%。不同于传统硫正极材料,通过该种方法获得的硫聚合物正极材料在电池充放电过程中直接产生短链中间产物,有效地从根本上抑制了易溶性长链多硫化锂的产生,从而有效提升了锂硫电池的长期循环稳定性。

4. 腈类衍生的有机硫聚合物

含有S2-4小分子的S-C复合材料具有理想的电化学性能。硫是有效的脱氢剂,因此可以在氩气保护条件下将升华的硫和聚丙烯腈(PAN)的混合物于280℃至300℃下加热6小时,从而形成具有共轭电子的导电聚合物–硫复合物(见图2(a)) [39] [56]。脱氢导致PAN发生环化,有助于形成骨架结构和硫的规则分布,并能达到较高的硫负载量。虽然硫和PAN都绝缘,但SPAN具有10−4 S/cm的优异电导率。在放电过程中,断开的-Sx-链首先生成-SyLi段,随后y的值逐渐降低直到C-S键断裂,最终形成不溶的Li2S。在充电过程中,碳共轭键先失去电子生成自由基,再迅速和Li2S结合生成C-SLi,并通过进一步充电重新生成-Sx-链 [57]。

2003年,Wang基于之前的研究进一步发现,SPAN纳米复合材料可作为活性正极应用于Li-S电池中,且具有唯一的放电平台,但并未进行详细分析 [56]。最近,人们再次注意到SPAN,并对该复合材料的电化学性能进行了许多后续研究。Yu [57] 和Fanous等 [58] 提出了如图2(b)和图2(c)所示的两种结构,其中-Sx-短链与脱氢环化的PAN主链共价结合。Zhang [58] 认为这两种结构并不准确,因为C/H摩尔比和其他研究的结果不吻合 [39] [58] [59] [60]。元素分析和热重分析–质谱(TG-MS)分析表明,SPAN的结构更像图2(d)和图2(e) [59]。-Sx-链中x的平均值为3.37 (x = n + 2),最大值应该小于4,否则-Sx-链在放电过程中会转变为长链多硫化物,导致多硫化物穿梭,循环性能变差。

Figure 2. (a) Possible thermo-reaction between PAN and sulfur [56]; Two possible molecular structures of SPAN according to (b) Yu’s and (c) Fanous’s reports [57] [58]; (d)-(e) Zhang revised structures of SPAN [59]

图2. (a) PAN和硫之间可能发生的热反应 [56];(b)和(c)是Yu和Fanous的报告中SPAN的两种可能的分子结构 [57] [58];(d)和(e)是Zhang提出的SPAN结构 [59]

Archer [61] 使用电化学和光谱学仪器来验证这些腈基–硫聚合物材料在锂化和脱锂过程的假设。如图3(a)所示,反应1和2假设与导电聚合物主体牢固连接的S-S键能够可逆地裂解和重组 [61]。共聚物中的每个硫原子都涉及单电子转移,这使得电池的理论比容量为837 mAh/g,放电产物为RS-Li和Li2S。在反应3和4中,R-S键在锂化过程中完全断裂,Li2S是唯一的含硫锂化产物,每个硫原子有两个电子转移,理论容量为1675 mAh/g。值得注意的是,基于这种正极的电池的电化学充放电曲线不存在较高电位的(2.35 V)还原过程(见图3(b)) [61],这意味着在这种正极中硫可以以S8以外的形式存在。该材料在0.4 C下循环1000周后仍具有出色的循环稳定性,这是因为当SPAN被锂化时,可以直接形成较小的Sx (x = 2 − 4)分子,缺点是该材料比容量较低。Coskun [62] 报道了一种硫共价三嗪骨架(S-CTF-1),硫在160℃下熔化,且在400℃下引发开环聚合反应转化为线性硫烷,S被共价结合并均匀分布在微孔中,高分辨率XPS证实了硫成功地掺入CTF-1结构中。虽然S-CTF-1在循环300周后容量损失仅为14.2%,但通过化学浸渍法该复合材料的硫含量较低(仅62 wt%)。

Figure 3. (a) Possible lithiation mechanisms of SPAN nanocomposites; (b) Discharge-charge curves of SPAN [61]

图3. (a) SPAN纳米材料可能的锂化机理和(b) SPAN不同循环的充放电曲线 [61]

腈类衍生的有机硫聚合物的化学结构可以看作是短链-Sx-共价键合到含有吡啶N单元的环化碳骨架上 [57]。共聚物直接转化为不溶性Li2S,从而避免了多硫化锂的穿梭,所得电池具有良好的循环性能。然而与其他共聚物相比,腈类衍生的有机硫聚合物有一些明显的缺点,例如硫含量较低、放电电压相对较低(约1.85 V)。

5. 异原子掺杂的富硫聚合物

因为元素硫的导电性差,所以同时获得高容量和高硫含量十分困难。异原子掺杂可以提高硫本身的电子传导性,促进硫吸附到碳主体上 [63] [64]。并且由于在放电过程中异原子–硫键优先断键,所以使用异原子掺杂的富硫聚合物作为正极材料是直接形成低阶多硫化锂的另一种方法。

基于之前关于磷硫化合物(例如P2S,P4S3,P4S5,P4S10)的研究,Qian等 [65] 报道了一系列新的富硫化磷分子(P4S10+n),并探究其在可充电电池中的应用可能性。这些分子是通过元素硫与P4S10直接共熔制备的,将不同量的硫嵌入P4S10中,形成六个P-Sm-P键。作为电活性材料时,P4S10+n分子在循环时表现出特定的电化学机理,Li3PS4和Li2S可能是最终产物。P4S10+n中的P4S40分子具有最高的容量值。在100 mA/g下,其初始放电容量为1223 mAh/g,在500 mA/g下循环100周后,稳定在720 mAh/g左右。

Yan团队 [66] 以二烯丙基硫醚(DADS)为前体,通过SeS2粉末掺杂合成了硒掺杂的聚二烯丙基四硫醚(PDATtSSe),将其用作锂硫电池正极材料,增强了电子电导率并改善了锂离子传输。同时,DFT模拟表明放电过程S-Se键断裂最可能发生,确保了放电过程的中间产物是短链多硫化物,从而限制穿梭效应。质谱测量证实SeS2已成功地共价结合到DADS分子中。原位紫外光谱表征表明循环过程不存在长链可溶性多硫化物。获得的Li-S电池循环容量为700 mAh/g,循环400周后的容量损失仅8%,库仑效率近乎100%。较高的电子/离子电导率和致密的电极结构确保电池体积容量高达2457 mAh/cm3,而活性物质负载高达7.07 mg/cm2时电池面积容量高达5.0 mAh/cm2。通过异原子掺杂的方法,不仅有效抑制了溶解性长链多硫化锂的产生,抑制了传输效应,提升了电池稳定性,而且增加了锂硫电池的体积能量密度和导电性,是进一步促进锂硫电池商业化应用的重要方法参考。

6. 结论

本综述总结了有机硫聚合物正极材料的主要研究成果,主要包括烯烃/炔烃、硫醇和腈类衍生的有机硫共聚物。当这些富硫共聚物在Li-S电池中循环时,S链与有机骨架共价相互作用并具有不同的锂化/脱锂机理,使其电化学性能优于传统的硫正极材料。此外,本综述也进行了介绍一些异原子掺杂的硫聚合物材料,这些材料显著提高了传统硫材料的电子/离子电导率,同时相比于传统电池,体积能量密度和面积容量也得到了很大提升。

基金项目

国家自然科学基金(51622208,21703149),江苏省自然科学基金(BK20150338)。

参考文献

[1] Armand, M. and Tarascon, J.M. (2008) Building Better Batteries. Nature, 451, 652-657.
https://doi.org/10.1038/451652a
[2] Goodenough, J.B. (2015) Energy Storage Materials: A Perspective. Energy Storage Materials, 1, 158-161.
https://doi.org/10.1016/j.ensm.2015.07.001
[3] Wang, X., Chen, Y., Schmidt, O.G. and Yan, C. (2016) Engineered Nanomembranes for Smart Energy Storage Devices. Chemical Society Reviews, 45, 1308-1330.
https://doi.org/10.1039/C5CS00708A
[4] Zhou, J., Qian, T., Wang, M., Xu, N., Zhang, Q., Li, Q. and Yan, C. (2016) Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 8, 5358-5365.
https://doi.org/10.1021/acsami.5b12392
[5] Xu, N., Ma, X., Wang, M., Qian, T., Liang, J., Yang, W., Wang, Y., Hu, J. and Yan, C. (2016) Stationary Full Li-Ion Batteries with Interlayer-Expanded V6O13 Cathodes and Lithiated Graphite Anodes. Electrochemical Acta, 203, 171-177.
https://doi.org/10.1016/j.electacta.2016.04.044
[6] Zhou, J., Qian, T., Yang, T., Wang, M., Guo, J. and Yan, C. (2015) Nanomeshes of Highly Crystalline Nitrogen-Doped Carbon Encapsulated Fe/Fe3C Electrodes as Ultrafast and Stable Anodes for Li-Ion Batteries. Journal of Materials Chemistry A, 3, 15008-15014.
https://doi.org/10.1039/C5TA03312H
[7] Yang, T., Qian, T., Wang, M., Liu, J., Zhou, J., Sun, Z., Chen, M. and Yan, C. (2015) A New Approach towards the Synthesis of Nitrogen-Doped Graphene/MnO2 Hybrids for Ultralong Cycle-Life Lithium Ion Batteries. Journal of Materials Chemistry A, 3, 6291-6296.
https://doi.org/10.1039/C4TA07208A
[8] Fang, R., Zhao, S., Sun, Z., Wang, D.W., Cheng, H.M. and Li, F. (2017) More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects. Advanced Materials, 29, Article ID: 1606823.
https://doi.org/10.1002/adma.201606823
[9] Yang, T., Qian, T., Wang, M., Shen, X., Xu, N., Sun, Z. and Yan, C. (2016) A Sustainable Route from Biomass Byproduct Okara to High Content Nitrogen-Doped Carbon Sheets for Efficient Sodium Ion Batteries. Advanced Materials, 28, 539-545.
https://doi.org/10.1002/adma.201503221
[10] Xie, Y., Chen, Y., Liu, L., Tao, P., Fan, M., Xu, N., Shen, X. and Yan, C. (2017) Carbon Monoliths: Ultra-High Pyridinic N-Doped Porous Carbon Monolith Enabling High-Capacity K-Ion Battery Anodes for Both Half-Cell and Full-Cell Applications. Advanced Materials, 29, Article ID: 1702268.
https://doi.org/10.1002/adma.201702268
[11] Xu, J., Lawson, T., Fan, H., Su, D. and Wang, G. (2018) Updated Metal Compounds (MOFs, -S, -OH, -N, -C) Used as Cathode Materials for Lithium-Sulfur Batteries. Advanced Energy Materials, 8, Article ID: 1702607.
https://doi.org/10.1002/aenm.201702607
[12] Bruce, P.G., Freunberger, S.A., Hardwick, L.J. and Tarascon, J.M. (2012) Li-O2 and Li-S Batteries with High Energy Storage. Nature Materials, 11, 19-29.
https://doi.org/10.1038/nmat3191
[13] Evers, S. and Nazar, L.F. (2013) New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes. Accounts of Chemical Research, 46, 1135-1143.
https://doi.org/10.1021/ar3001348
[14] Ji, X.L., Lee, K.T. and Nazar, L.F. (2009) A Highly Ordered Nanostructured Carbon-Sulphur Cathode for Lithium-Sulphur Batteries. Nature Materials, 8, 500-506.
https://doi.org/10.1038/nmat2460
[15] Yang, Y., Zheng, G.Y. and Cui, Y. (2013) Nanostructured Sulfur Cathodes. Chemical Society Reviews, 42, 3018-3032.
https://doi.org/10.1039/c2cs35256g
[16] Liang, J., Sun, Z.H., Li, F. and Cheng, H.M. (2016) Carbon Materials for Li-S Batteries: Functional Evolution and Performance Improvement. Energy Storage Materials, 2, 76-106.
https://doi.org/10.1016/j.ensm.2015.09.007
[17] Larcher, D. and Tarascon, J. (2015) Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nature Chemistry, 7, 19-29.
https://doi.org/10.1038/nchem.2085
[18] Pang, Q., Liang, X., Kwok, C.Y. and Nazar, L.F. (2016) Advances in Lithium-Sulfur Batteries Based on Multifunctional Cathodes and Electrolytes. Nature Energy, 1, 16132-16142.
https://doi.org/10.1038/nenergy.2016.132
[19] Wild, M., O’Neill, L., Zhang, T., Purkayastha, R., Minton, G., Marinescu, M. and Offer, G.J. (2015) Lithium Sulfur Batteries, a Mechanistic Review. Energy & Environmental Science, 8, 3477-3494.
https://doi.org/10.1039/C5EE01388G
[20] Rosenman, A., Markevich, E., Salitra, G., Aurbach, D., Garsuch, A. and Chesneau, F.F. (2015) Review on Li-Sulfur Battery Systems: An Integral Perspective. Advanced Energy Materials, 5, Article ID: 1500212.
https://doi.org/10.1002/aenm.201500212
[21] Liu, J., Qian, T., Wang, M., Liu, X., Xu, N., You, Y. and Yan, C. (2017) Molecularly Imprinted Polymer Enables High-Efficiency Recognition and Trapping Lithium Polysulfides for Stable Lithium Sulfur Battery. Nano Letters, 17, 5064-5070.
https://doi.org/10.1021/acs.nanolett.7b02332
[22] Ma, L., Hendrickson, K.E., Wei, S. and Archer, L.A. (2015) Nanomaterials: Science and Applications in the Lithium-Sulfur Battery. Nano Today, 10, 315-338.
https://doi.org/10.1016/j.nantod.2015.04.011
[23] Cheng, X.B., Huang, J.Q., Zhang, Q., Peng, H.J., Zhao, M.Q. and Wei, F. (2014) Aligned Carbon Nanotube/Sulfur Composite Cathodes with High Sulfur Content for Lithium-Sulfur Batteries. Nano Energy, 4, 65-72.
https://doi.org/10.1016/j.nanoen.2013.12.013
[24] Wang, H., Yang, Y., Liang, Y., Robinson, J.T., Li, Y., Jackson, A., Cui, Y. and Dai, H. (2011) Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur Battery Cathode Material with High Capacity and Cycling Stability. Nano Letters, 11, 2644-2647.
https://doi.org/10.1021/nl200658a
[25] Zheng, G., Yang, Y., Cha, J.J., Hong, S.S. and Cui, Y. (2011) Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries. Nano Letters, 11, 4462-4467.
https://doi.org/10.1021/nl2027684
[26] Jayaprakash, N., Shen, J., Moganty, S.S., Corona, A. and Archer, L.A. (2011) Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries. Angewandte Chemie, 126, 6026-6030.
https://doi.org/10.1002/ange.201100637
[27] Xiao, L.F., Cao, Y.L., Xiao, J., Schwenzer, B., Engelhard, M.H., Saraf, L.V., Nie, Z.M., Exarhos, G.J. and Liu, J. (2012) A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium-Sulfur Batteries with Long Cycle Life. Advanced Materials, 24, 1176-1181.
https://doi.org/10.1002/adma.201103392
[28] Wu, F., Chen, J.Z., Chen, R.J., Wu, S.X., Li, L., Chen, S. and Zhao, T. (2011) Sulfur/Polythiophene with a Core/Shell Structure: Synthesis and Electrochemical Properties of the Cathode for Rechargeable Lithium Batteries. The Journal of Physical Chemistry C, 115, 6057-6063.
https://doi.org/10.1021/jp1114724
[29] Wang, J., Chen, J., Konstantinov, K., Zhao, L., Ng, S.H., Wang, G.X., Guo, Z.P. and Liu, H.K. (2006) Sulphur-Polypyrrole Composite Positive Electrode Materials for Rechargeable Lithium Batteries. Electrochemical Acta, 51, 4634-4638.
https://doi.org/10.1016/j.electacta.2005.12.046
[30] Choi, Y.J., Jung, B.S., Lee, D.J., Jeong, J.H., Kim, K.W., Ahn, H.J., Cho, K.K. and Gu, H.B. (2007) Electrochemical Properties of Sulfur Electrode Containing Nano Al2O3 for Lithium/Sulfur Cell. Physica Scripta, T129, 62-65.
https://doi.org/10.1088/0031-8949/2007/T129/014
[31] Lee, K.T., Black, R., Yim, T., Ji, X.L. and Nazar, L.F. (2012) Surface-Initiated Growth of Thin Oxide Coatings for Li-Sulfur Battery Cathodes. Advanced Energy Materials, 2, 1490-1496.
https://doi.org/10.1002/aenm.201200006
[32] Seh, Z.W., Li, W.Y., Cha, J.J., Zheng, G.Y., Yang, Y., McDowell, M.T., Hsu, P.C. and Cui, Y. (2013) Sulphur-TiO2 Yolk-Shell Nanoarchitecture with Internal Void Space for Long-Cycle Lithium-Sulphur Batteries. Nature Communications, 4, 1331-1336.
https://doi.org/10.1038/ncomms2327
[33] Chang, C.H., Chung, S.H. and Manthiram, A. (2017) Transforming Waste Newspapers into Nitrogen-Doped Conducting Interlayers for Advanced Li-S Batteries. Sustainable Energy Fuels, 1, 444-449.
https://doi.org/10.1039/C7SE00014F
[34] Xin, S., Gu, L., Zhao, N.-H., Yin, Y.-X., Zhou, L.-J., Guo, Y.-G. and Wan, L.-J. (2012) Smaller Sulfur Molecules Promise Better Lithium-Sulfur Batteries. Journal of the American Chemical Society, 134, 18510-18513.
https://doi.org/10.1021/ja308170k
[35] Wang, J., Yang, J., Xie, J. and Xu, N. (2002) A Novel Conductive Polymer-Sulfur Composite Cathode Material for Rechargeable Lithium Batteries. Advanced Materials, 14, 13-14.
https://doi.org/10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
[36] Kim, J.-S., Hwang, T.H., Kim, B.G., Min, J. and Choi, J.W. (2014) A Lithium-Sulfur Battery with a High Areal Energy Density. Advanced Functional Materials, 24, 5359-5367.
https://doi.org/10.1002/adfm.201400935
[37] Chung, W.J., Griebel, J.J., Kim, E.T., Yoon, H., Simmonds, A.G., Ji, H.J., Dirlam, P.T., Glass, R.S., Wie, J.J., Nguyen, N.A., Guralnick, B.W., Park, J., Arpad, S., Theato, P., Mackay, M.E., Sung, Y.-E., Char, K. and Pyun, J. (2013) The Use of Elemental Sulfur as an Alternative Feedstock for Polymeric Materials. Nature Chemistry, 5, 518-524.
https://doi.org/10.1038/nchem.1624
[38] Simmonds, A.G., Griebel, J.J., Park, J., Kim, K.R., Chung, W.J., Oleshko, V.P., Kim, J., Kim, E.T., Glass, R.S., Soles, C.L., Sung, Y.-E., Char, K. and Pyun, J. (2014) Inverse Vulcanization of Elemental Sulfur to Prepare Polymeric Electrode Materials for Li-S Batteries. ACS Macro Letters, 3, 229-232.
https://doi.org/10.1021/mz400649w
[39] Zeng, S., Li, L., Zhao, D., Liu, J., Niu, W., Wang, N. and Chen, S. (2017) Polymer-Capped Sulfur Copolymers as Lithium-Sulfur Battery Cathode: Enhanced Performance by Combined Contributions of Physical and Chemical Confinements. The Journal of Physical Chemistry C, 121, 2495-2503.
https://doi.org/10.1021/acs.jpcc.6b09543
[40] Xu, R., Lu, J. and Amine, K. (2015) Progress in Mechanistic Understanding and Characterization Techniques of Li-S Batteries. Advanced Energy Materials, 5, Article ID: 1500408.
https://doi.org/10.1002/aenm.201500408
[41] Liu, X., Huang, J.-Q., Zhang, Q. and Mai, L. (2017) Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries. Advanced. Materials, 29, Article ID: 1601759.
https://doi.org/10.1002/adma.201601759
[42] Pope, M.A. and Aksay, I.A. (2015) Structural Design of Cathodes for Li-S Batteries. Advanced Energy Materials, 5, Article ID: 1500124.
https://doi.org/10.1002/aenm.201500124
[43] Wang, J., He, Y.-S. and Yang, J. (2015) Sulfur-Based Composite Cathode Materials for High-Energy Rechargeable Lithium Batteries. Advanced Materials, 27, 569-575.
https://doi.org/10.1002/adma.201402569
[44] Dirlam, P.T., Glass, R.S., Char, K. and Pyun, J. (2017) The Use of Polymers in Li-S Batteries: A Review. Journal of Polymer Science Part A: Polymer Chemistry, 55, 1635-1668.
https://doi.org/10.1002/pola.28551
[45] Penczek, S., Slazak, R. and Duda, A. (1978) Anionic Copolymerisation of Elemental Sulphur. Nature, 273, 738-739.
https://doi.org/10.1038/273738a0
[46] Duda, A. and Penczek, S. (1980) Anionic Copolymerisation of Elemental Sulfur with 2,2-Dimethylthiirane. Die Makromolekulare Chemie, 181, 995-1001.
https://doi.org/10.1002/macp.1980.021810503
[47] Blight, L.B., Currell, B.R., Nash, B.J., Scott, T.M. and Stillo, C. (1980) Chemistry of the Modification of Sulphur by the Use of Dicyclopentadiene and of Styrene. British Polymer Journal, 12, 5-11.
https://doi.org/10.1002/pi.4980120103
[48] Tsuda, T. and Takeda, A. (1996) Palladium-Catalysed Cycloaddition Copolymerisation of Diynes with Elemental Sulfur to Poly(thiophene)s. Chemical Communications, 1317-1318.
https://doi.org/10.1039/cc9960001317
[49] Fu, C., Li, G., Zhang, J., Cornejo, B., Piao, S.S., Bozhilov, K.N., Haddon, R.C. and Guo, J. (2016) Electrochemical Lithiation of Covalently Bonded Sulfur in Vulcanized Polyisoprene. ACS Energy Letters, 1, 115-120.
https://doi.org/10.1021/acsenergylett.6b00073
[50] Oschmann, B., Park, J., Kim, C., Char, K., Sung, Y.-E. and Zentel, R. (2015) Copolymerization of Polythiophene and Sulfur to Improve the Electrochemical Performance in Lithium-Sulfur Batteries. Chemistry Materials, 27, 7011-7017.
https://doi.org/10.1021/acs.chemmater.5b02317
[51] Sun, Z., Xiao, M., Wang, S., Han, D., Song, S., Chen, G. and Meng, Y. (2014) Sulfur-Rich Polymeric Materials with Semi-Interpenetrating Network Structure as a Novel Lithium-Sulfur Cathode. Journal of Materials Chemistry A, 2, 9280-9286.
https://doi.org/10.1039/c4ta00779d
[52] Hu, H., Zhao, Z., Wan, W., Gogotsi, Y. and Qiu, J. (2013) Ultralight and Highly Compressible Graphene Aerogels. Advanced Materials, 25, 2219-2223.
https://doi.org/10.1002/adma.201204530
[53] Kim, H., Lee, J., Ahn, H., Kim, O. and Park, M.J. (2015) Synthesis of Three-Dimensionally Interconnected Sulfur-Rich Polymers for Cathode Materials of High-Rate Lithium-Sulfur Batteries. Nature Communications, 6, 7278-7287.
https://doi.org/10.1038/ncomms8278
[54] Je, S.H., Hwang, T.H., Talapaneni, S.N., Buyukcakir, O., Kim, H.J., Yu, J.-S., Woo, S. -G., Jang, M.C., Son, B.K., Coskun, A. and Choi, J.W. (2016) Rational Sulfur Cathode Design for Lithium-Sulfur Batteries: Sulfur-Embedded Benzoxazine Polymers. ACS Energy Letters, 1, 566-572.
https://doi.org/10.1021/acsenergylett.6b00245
[55] Xu, N., Qian, T., Liu, X., Liu, J., Chen, Y. and Yan, C. (2017) Greatly Suppressed Shuttle Effect for Improved Lithium Sulfur Battery Performance through Short Chain Intermediates. Nano Letters, 17, 538-543.
https://doi.org/10.1021/acs.nanolett.6b04610
[56] Wang, J., Yang, J., Wan, C., Du, K., Xie, J. and Xu, N. (2003) Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries. Advanced Functional Materials, 13, 487-492.
https://doi.org/10.1002/adfm.200304284
[57] Yu, X., Xie, J., Yang, J., Huang, H., Wang, K. and Wen, Z. (2004) Lithium Storage in Conductive Sulfur-Containing Polymers. Journal of Electroanalytical Chemistry, 573, 121-128.
https://doi.org/10.1016/S0022-0728(04)00345-6
[58] Fanous, J., Wegner, M., Grimminger, J., Andresen, A. and Buchmeiser, M.R. (2011) Structure-Related Electrochemistry of Sulfur-Poly(acrylonitrile) Composite Cathode Materials for Rechargeable Lithium Batteries. Chemistry of Materials, 23, 5024-5028.
https://doi.org/10.1021/cm202467u
[59] Zhang, S.S. (2014) Understanding of Sulfurized Polyacrylonitrile for Superior Performance Lithium/Sulfur Battery. Energies, 7, 4588-4600.
https://doi.org/10.3390/en7074588
[60] Wang, L., He, X., Li, J., Chen, M., Gao, J. and Jiang, C. (2012) Charge/Discharge Ccharacteristics of Sulfurized Polyacrylonitrile Composite with Different Sulfur Content in Carbonate Based Electrolyte for Lithium Batteries. Electrochimica Acta, 72, 114-119.
https://doi.org/10.1016/j.electacta.2012.04.005
[61] Wei, S., Ma, L., Hendrickson, K.E., Tu, Z. and Archer, L.A. (2015) Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites. Journal of the American Chemical Society, 137, 12143-12152.
https://doi.org/10.1021/jacs.5b08113
[62] Talapaneni, S.N., Hwang, T.H., Je, S.H., Buyukcakir, O., Choi, J.W. and Coskun, A. (2016) Elemental-Sulfur-Mediated Facile Synthesis of a Covalent Triazine Framework for High-Performance Lithium-Sulfur Batteries. Angewandte Chemie International Edition, 128, 3158-3163.
https://doi.org/10.1002/ange.201511553
[63] Song, J., Xu, T., Gordin, M.L., Zhu, P., Lv, D., Jiang, Y.-B., Chen, Y., Duan, Y. and Wang, D. (2014) Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High-Areal-Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium-Sulfur Batteries. Advanced Functional Materials, 24, 1243-1250.
https://doi.org/10.1002/adfm.201302631
[64] Manthiram, A., Chung, S.H. and Zu, C. (2015) Lithium-Sulfur Batteries: Progress and Prospects. Advanced Materials, 27, 1980-2006.
https://doi.org/10.1002/adma.201405115
[65] Li, X., Liang, J., Lu, Y., Hou, Z., Cheng, Q., Zhu, Y. and Qian, Y. (2017) Sulfur-Rich Phosphorus Sulfide Molecules for Use in Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 56, 2937-2941.
https://doi.org/10.1002/anie.201611691
[66] Zhou, J., Qian, T., Xu, N., Wang, M., Ni, X., Liu, X., Shen, X. and Yan, C. (2017) Selenium-Doped Cathodes for Lithium-Organosulfur Batteries with Greatly Improved Volumetric Capacity and Coulombic Efficiency. Advanced Materials, 29, Article ID: 1701294.
https://doi.org/10.1002/adma.201701294