炎症微环境:肝肿瘤细胞和肝肿瘤干细胞中的问题
Inflammatory Microenvironment: Problems of Liver Tumor Cells and Liver Cancer Stem Cells
DOI: 10.12677/ACM.2021.1110675, PDF, HTML, XML, 下载: 455  浏览: 598 
作者: 熊凌风, 区奕猛*:广东药科大学附属第一医院肝胆外科,广东 广州
关键词: 炎性微环境肝细胞癌治疗策略肝癌干细胞Inflammatory Microenvironment Hepatocellular Carcinoma Treatment Strategy Hepatic Cancer Stem Cells
摘要: 持续的炎症会促进和加重恶性肿瘤。原发性肝癌,主要是肝细胞癌(HCC),是炎症相关癌症的一个明显例子。炎症微环境在HCC发生发展的各阶段起着不可忽视的作用,因此,在确定治疗策略时应充分考虑炎症微环境的影响。概述HCC炎症微环境的组成及该环境对肝癌细胞和肝癌肿瘤干细胞影响的关键问题,探讨其在靶向治疗和免疫治疗盛行时代中的机遇和挑战。
Abstract: Persistent inflammation promotes and aggravates malignancy. Primary liver cancer, mainly hepatocellular carcinoma (HCC), is an obvious example of inflammation-related cancers. The role of the inflammatory microenvironment in the development of HCC cannot be ignored at all stages, therefore, the impact of the inflammatory microenvironment is fully considered in determining treatment strategies. This paper summarizes the composition of the inflammatory microenvironment of HCC and the key issues of the impact of this environment on HCC cells and HCC cancer stem cells, and explores its opportunities and challenges in the prevailing era of targeted therapy and immunotherapy.
文章引用:熊凌风, 区奕猛. 炎症微环境:肝肿瘤细胞和肝肿瘤干细胞中的问题[J]. 临床医学进展, 2021, 11(10): 4591-4603. https://doi.org/10.12677/ACM.2021.1110675

1. 前言

19世纪普鲁士科学家Rudolph Virchow首次提出了炎症机制在恶性肿瘤发生中的意义。在他的观察中,肿瘤经常发生在持续炎症的部位,肿瘤组织往往含有炎性浸润 [1]。肝细胞癌(HCC)是原发性肝癌,尽管近年来肝癌的诊断和治疗取得了很大进展,但其导致的癌症相关死亡人数仍居全球第三位 [2]。由于复发和转移,肝癌患者的5年生存率仍然很低,作为典型的炎症相关癌症,有必要了解肝癌复发和转移的分子机制,并提出新的治疗靶点。在大多数新生儿或幼儿中,乙肝病毒会引起慢性感染,发展为肝癌的风险很高 [3]。对于丙型肝炎病毒感染来说,这种情况甚至更糟糕,它表现出更高的慢性感染频率(乙肝病毒病例的10%与丙型肝炎病毒的60%~80%),并有更大的肝硬化倾向(比乙肝病毒高10~20倍) [4]。当肝炎得不到解决时,长期的炎症和肝脏损伤会导致肝硬化,最终导致肝癌。到目前为止,外科肝切除和肝移植是早期HCC的有效治疗方法,但不适合大多数晚期患者 [5]。而炎症微环境在肝细胞癌发生发展中起重要作用,本文从炎症微环境的组成入手,进一步了解炎症微环境对肝癌细胞以及肿瘤干细胞的影响,探讨炎症微环境的调节可能具有开发治疗靶标的潜力。

2. 炎症微环境

2.1. 微环境

HCC是炎症相关癌症,慢性炎症的特征是细胞因子的持续表达和免疫细胞募集到肝脏。在慢性HBV和HCV感染患者中,肝脏氧化应激引起DNA损伤,导致基因突变与HCC风险增加相关 [6]。慢性炎症也可引起纤维化和肝硬化,最后导致肝癌发生 [7]。此外,TNF-α诱导的NF-κB活化在肝癌发生中起关键作用 [8]。炎症微环境在调节肝纤维化、肝癌发生、上皮间质转化(Epithelial-mesenchymal transition, EMT)、肿瘤侵袭和转移过程中起关键作用。HCC微环境包括基质细胞:如癌相关成纤维细胞(cancer-associated fibroblasts, CAFs)、肝星状细胞(hepatic stellate cells, HSCs)、内皮细胞和免疫细胞,生长因子和炎性细胞因子,以及细胞外基质(extracellular matrix, ECM) [9]。

2.2. 炎症介质

2.2.1. 白介素

1) 白介素6 (IL-6)

IL-6主要由枯弗细胞响应肝细胞损伤产生,在肝硬化肝脏中大量存在。IL-6被认为是HCC的标志物,特异性为93%,灵敏度为77% [10],目前使用的甲胎蛋白的灵敏度为41%~65% [11]。血清IL-6可通过磷酸化和激活STAT3促进肝细胞的致癌性转化,损害肝功能并限制HCC患者的生存期。STAT3可以作为癌基因,保护癌细胞免于凋亡。给予抗IL-6单克隆抗体或STAT3的小分子抑制剂可下调STAT3磷酸化并缓解细胞凋亡抑制,进而改善对化疗的反应 [12]。IL-6在肝脏病理学中可促进肝再生也可减少肝细胞凋亡,加剧向HCC的疾病进展。

2) 白介素37 (IL-37)

与正常肝组织和癌旁组织相比,HCC肿瘤组织中IL-37的表达下降。IL-37表达水平与肿瘤大小呈负相关。瘤内IL-37高表达与HCC患者更好的DFS和OS有关。在小鼠皮下HCC模型中,IL-37过表达显著抑制肿瘤生长,NK细胞浸润增加 [13]。故IL-37可抑制HCC发生。自噬是一种自我进食过程,负责细胞稳态。自噬通过抑制肿瘤起始和促进随后的肿瘤生长,在HCC的发生发展中发挥双重作用 [14]。最近,Li等报道IL-37处理可诱导HCC细胞系自噬体的产生和凋亡。进一步研究表明,IL-37通过抑制PI3K/AKT/m TOR信号通路触发HCC细胞自噬和凋亡,直接影响HCC细胞活力 [15]。这些研究提示IL-37可以通过对HCC细胞活力的直接作用来抑制HCC发生。

2.2.2. 趋化因子

趋化因子系统在HCC的炎症中具有双重作用。一方面,趋化因子本身可以由不同的炎性细胞因子并通过募集不同的免疫细胞作为炎症介质存在;另一方面,趋化因子可触发HCC微环境中肿瘤细胞和非肿瘤细胞分泌其他各种炎性细胞因子。在HCC中,CXCL12-CXCR4轴在血管生成调节中很重要,CXCR4表达升高与肿瘤侵袭行为、转移和不良预后相关 [16]。CL20-CCR6轴上调与肿瘤侵袭和转移有关 [17]。M2巨噬细胞源性CCL22表达与不良预后和通过Snail激活的上皮间质转化(EMT)增加相关 [18]。趋化因子通过与其受体结合协调炎症反应,并具有趋化特性,这是细胞进出微环境的关键。

2.2.3. 环氧合酶2 (COX2)

1) 环氧合酶(COX)是花生四烯酸代谢的限速酶。其中,COX-2是一种高度可诱导的亚型,在促炎症触发因素(包括细胞因子、组织损伤和有丝分裂原)的作用下迅速上调。

2) 在人和动物HCC中发现COX-2表达增加。在肝癌细胞中也检测到PGs水平升高,最显著的是PGE2。COX-2的过表达或外源性PGE2治疗增加人肝癌细胞的生长和侵袭性。环氧合酶抑制剂即非甾体类抗炎药(NSAIDs)抑制增殖和诱导肝细胞癌细胞凋亡 [19],已知这些抑制剂通过COX依赖性和非依赖性机制介导。实验证明COX-2和EGFR信号通路之间的密切互动。已发现EGFR在人HCC细胞中的激活可上调COX-2的表达和PGE2的合成。同样,已知COX-2衍生的PGE2可转激活EGFR受体。此外,COX-2衍生的前列腺素可能是参与肝脏炎症和肿瘤早期阶段的EGFR激活的一个关键信号 [20]。这些发现提示COX-2衍生的前列腺素信号在肝癌发生中的重要作用。

2.3. 构型猜想

2.3.1. 细胞

1) 巨噬细胞

① 肿瘤相关巨噬细胞(TAMs)是肿瘤白细胞浸润的主要成分,在炎症相关癌症(包括HCC)通过细胞因子、趋化因子、生长因子和基质金属蛋白酶的表达促进血管生成、转移和获得性免疫的抑制从而在肿瘤进展中发挥作用。

② TAMs分为两类:M1巨噬细胞由脂多糖(LPS)和干扰素-γ (IFN-γ)诱导,并具有炎症和抗肿瘤特性。白细胞介素4 (IL-4)和白细胞介素13 (IL-13)可诱导M2巨噬细胞,具有抗炎和促肿瘤能力 [21]。由于TAMs的可塑性,在一定条件下,M1和M2状态可以相互转化。而在肿瘤环境中TAMs主要向M2表型极化。M2巨噬细胞数量增加与血管生成、转移和不良预后相关。M2极化的TAM通过IL-6/STAT3信号通路影响HCC细胞,研究表明其可能有助于TLR4/STAT3通路 [2]。

③ 趋化因子(CCL2、CCL5、CCL15、CCL20)、细胞因子(如CSF-1)和补体级联反应产物被证实参与TAMs募集和迁移的机制 [22]。TAMs诱导上皮细胞表达ST18,促进HCC中上皮细胞–巨噬细胞的相互依赖性 [23]。TAMs还释放各种免疫抑制趋化因子和细胞因子,包括IL-10、转化生长因子β (TGF-β),发挥免疫调节作用 [24]。

2) 星状细胞

① 肝星状细胞(HSC)也是HCC肿瘤微环境(TME)的重要组成部分。活化的HSC转化为肌纤维母细胞样细胞,在肝损伤或慢性炎症反应中受多种因子和信号通路激活,促进肝损伤、炎症、纤维化和HCC的进展。

② 星状细胞是最早发现于肝脏窦周间隙的星形细胞,通过分泌生长因子和细胞外基质支持伤口愈合。HSC是维生素A在体内的最大储备场所,当遇到受损肝细胞和白细胞的信号时,HSC活化,失去维生素A储存并获得α-平滑肌肌动蛋白(αSMA)的表达,呈现收缩性肌纤维母细胞样表型,以便沉积细胞外基质(ECM)蛋白并愈合组织损伤区域,但这也可导致纤维化 [25]。

③ HSC活化受多种因子和信号通路(例如TGFβ、血小板源性生长因子(PDGF)、notch、microRNA)控制。hedgehog信号也被证明可调控HSC,为HSC的靶向治疗开辟了新的机会 [26]。NF-κB通路也有助于HSC活化和存活,并且在更大程度上是肝脏疾病进展的中心因素,将肝损伤、炎症、纤维化和HCC联系起来 [8]。

2.3.2. 信号通路

1) NF-κB

① 参与炎症–纤维化–癌症轴的最突出和最具特征性的信号通路之一是NF-κB通路,该通路在肝癌发生、发展中的主导作用已被反复证实 [8]。

② 在HCC的早期阶段,NF-κB的细胞保护作用占主导地位,因为它能防止肝细胞死亡。在晚期阶段,NF-κB促进肿瘤细胞的生存和增殖。利用DENA诱导的小鼠HCC,发现肝细胞和骨髓细胞(包括Kupffer细胞)中IKK-β的消融可抑制DENA诱导的HCC发展 [27]。这一效应伴随着IL-6、TNF-α和肝细胞生长因子等促炎细胞因子的产生减少,这些因子是由非父系细胞响应垂死的肝细胞分泌的,以刺激剩余肝细胞的代偿性增殖 [27]。另一项研究表明,骨髓细胞特别是Kupffer细胞中的IKK-β也通过产生IL-6参与了转移性肝脏恶性肿瘤的发展 [28]。

2) JAK-STAT 信号通路

① STAT家族蛋白在各物种的细胞生长和分化的细胞因子和信号通路中发挥着重要作用。其中STAT3是参与免疫反应、炎症和肿瘤发生的一种转录因子,被发现对代偿性肝再生和化学诱导的HCC发展至关重要 [29]。

② HCC中STAT3活化有几种原因。最重要是STAT3诱导信号水平升高,尤其是IL-6和IL-22,其在HCC中通过STAT3活化发挥致癌功能 [30] [31]。其次,破坏STAT3的负调控因子,如SOCS3和SHP1/2,可能增强STAT3活化并促进HCC发展 [32]。第三,良性肝腺瘤中编码IL-6R gp130亚基的基因发生激活突变时,伴随β-catenin突变,可引起STAT3活化和HCC发生,但频率较低 [33]。STAT3的促增殖作用与其对HCC细胞的抗凋亡功能高度相关。Jak2抑制剂AG490阻断STAT3信号转导后,细胞周期蛋白D1 (cyclin D1)下调,细胞周期停滞在G0/G1期,并下调抗凋亡蛋白Bcl-xL、survivin和XIAP,从而诱导细胞凋亡 [34]。在移植了高转移性HCC细胞系和来自HCC患者的IL-22 + 肿瘤浸润淋巴细胞的小鼠中,肿瘤组织中pSTAT3的表达增加伴随着细胞周期蛋白D1、Bcl-2和Bcl-xL的上调。表明IL-22介导的STAT3活化在HCC肿瘤生长和抗凋亡中的作用 [31]。STAT3激活通过转录诱导上皮间质转化(EMT)标志物(包括Slug和Twist)增强HCC细胞的迁移和侵袭,表明STAT3激活可能通过介导HCC的EMT诱导侵袭和转移。

2.3.3. 通讯

分子生物学中基因功能的传统解释是蛋白编码基因(DNA→mRNA→蛋白质)的中心法则。然而,不到2%的哺乳动物基因组编码蛋白质,而大于90%为非编码RNA (ncRNA) [35]。ncRNA根据长度分为两组,分别为小ncRNA和长ncRNA (lncRNA)。小ncRNA包括microRNA (miRNA)、转移RNA (tRNA)和一些核糖体RNA转录本。

1) MicroRNAs

① MiRNA是一种小的(小于22个核苷酸)非编码转录本,在转录后或翻译水平调节基因表达,从而调节生理功能,如细胞生长、迁移、侵袭、球体形成和转移。微小RNA (miRNA)在TME中发挥的重要作用 [36]。

② 已证实涉及多个miRNA的表观遗传回路可促进HCC形成 [37]。最近发现,通过miR-124、IL6R、STAT3、miR-24和miR-629组成的microRNA炎症反馈环路,短暂抑制HNF4α (肝细胞核因子4α)可启动肝细胞转化。此外,研究表明,一旦该回路被激活,就会维持对HNF4α的抑制,并维持肝癌的发生 [37]。HNF4α调控的miR-124的表达被关闭,可释放其对IL-6R的负调控,形成正反馈回 [38]。调节炎症信号的miR-124能有效预防和抑制肝癌发生。miR-26表达降低的肿瘤有NF-κB和IL-6信号通路的激活。研究表明,利用腺相关病毒对miR-26进行低表达,可抑制癌细胞增殖,诱导肿瘤特异性凋亡,并显著抑制HCC的发展 [39]。在胆碱缺乏和氨基酸定义饮食(CDAA)诱导的NASH中发现致癌miR-155上调,同时抑制其抑瘤靶点CCAAT/增强剂结合蛋白β (C/EBPβ),导致小鼠肝癌发生。miR-155的异位表达促进了HCC细胞的生长,而其耗竭则抑制了肿瘤细胞的生长 [40]。

③ 综上,miRNA具有同时调控数个靶基因,从而控制多条信号通路。而miRNA的差异表达,如miR-124、miR-26和miR-155等,在肿瘤微环境及其对肝癌形成中发挥重要作用。

2) LncRNAs

① lncRNA是一类长度大于200个核苷酸的非蛋白编码转录本。参与肿瘤微环境的调控和癌细胞间的相互信号传导,它在广泛的生物学过程中具有调控增殖、凋亡、转移、和代谢多种功能。

② Li及其同事分析了lncRNA在HSC肌成纤维细胞中的表达谱,以确定其在HSC活化和静止以及肝纤维化发展中的潜在调节作用。例如,该研究小组报道NONHSAT200340.1靶向FGF2通过c-Jun氨基末端激酶(JNK)信号调节HSC的活化。另一种lncRNA,LTCONS_00038568,被证明靶向netrin-4 (NTN4),通过抑制上皮间质转化(EMT)调节肝纤维化 [41]。LncRNA也调节巨噬细胞的M1或M2极化,如LncRNA-cox-2、LncRNA-CASC2c、LncRNA-TUC339和T-UCR。这些异常表达的lncRNA可作为某些癌症的早期诊断标志物或作为癌症治疗的潜在生物学靶点。环氧合酶(Cox)-2蛋白在调节炎症反应中起着重要作用。lncRNA-cox-2在M1巨噬细胞中的表达高于非极化巨噬细胞和M2巨噬细胞。此外,lncRNA-cox-2的siRNA降低了M1巨噬细胞标志物的表达水平,包括M1巨噬细胞中的IL-12、诱导型一氧化氮合酶(iNOS)和肿瘤坏死因子α (TNF-α)。同时增加M2标志物的表达,如IL-10和精氨酸酶-1 (Arg-1),并在M2巨噬细胞的炎症区1 (Fizz-1)中发现。再者,当与lncRNA-cox-2敲低的M1巨噬细胞共培养时,HCC细胞的增殖、迁移、侵袭、血管生成和上皮间质转化(EMT)被抑制。相反,lncRNA-cox-2敲低M2巨噬细胞促进HCC细胞的增殖并抑制其凋亡。这些数据表明lncRNA-cox-2通过抑制巨噬细胞M2极化抑制肿瘤生长和肝癌细胞的免疫逃避 [42]。TGF-β在肿瘤进展中发挥复杂作用,并且TGF-β被认为通过下调E-cadherin (上皮标记物)和上调Snail (间充质标记物)促进EMT [43]。一种新的lncRNA,命名为TGF-β诱导的长链非编码RNA (TLINC),进一步被确定为TGF-β在肝细胞和非肝细胞中诱导的靶点 [44]。两种TLINC亚型(长和短)的表达分别与上皮和间充质表型相关。TLINC的长亚型与转移表型和促炎性细胞因子(IL-8)水平升高呈正相关。另外在上皮细胞和间质细胞中均检测到TLINC,并确定为肿瘤标志物。另一种lncRNA (lncRNA-ATB)被报道是由TGF-β1诱导的。lncRNA-ATB在HCC标本中过表达,通过调节ZEB1/ZEB2/miR-200级联反应增强EMT和转移 [45]。这些证据表明,几种lncRNA受到TGF-β的调控,在TGF-β介导的对EMT、迁移和侵袭的影响中发挥重要作用。

2.3.4. 其他物质:乙型肝炎病毒X (HBX)

1) HCC是一种典型的慢性炎症相关癌症,HBx是由HBV编码的一种多功能病毒蛋白,被认为是HBV相关HCC (HBV-HCC)病理最重要的决定因素之一,HBx与肿瘤微环境组分之间的复杂相互作用最终促进肿瘤的起始、进展、侵袭和转移。

2) HBx在转录水平调节炎性细胞因子的表达,从而在慢性肝脏炎症的调节中发挥关键作用 [46]。研究表明HBx通过Toll样受体衔接蛋白MyD88激活NF-κB和MAPKs,从而促进IL-6的合成和分泌 [47]。IL-1也在转录水平被HBx上调。IL-6和IL-1 (参与HCC发生的主要促炎细胞因子)的水平在HCC患者中通常较高。此类细胞因子能够调节促致癌转录因子NF-κB和STAT3 [48]。此外,HBx还选择性调节其他促炎细胞因子,包括IL-8、IL-18、IL-23和TNF-α [49]。这些细胞因子在HCC发生的病理过程中起作用。例如,IL-8调节肿瘤生长和肝细胞的恶变;此外,其与HCC侵袭和转移相关 [50]。血清IL-18可作为这些患者的预后指标 [51]。HCC患者COX-2水平常升高,其表达与HBV-HCC患者肿瘤中HBx的表达显著相关。HBx以COX-2依赖的方式上调MT1-MMP的表达,通过激活COX-2/PGE(2)信号通路从而促进肿瘤生长、侵袭和转移发挥其抗凋亡作用 [52]。此外,HBx与COX-3共区域化可能导致COX-2上调,从而促进HepG2细胞生长 [53]。所以HBx以各种方式维持COX-2活性,发挥其致癌作用。故HBx可能是通过调节炎症微环境中的炎症介质来实现激活多种细胞信号通路从而控制细胞周期、增殖和凋亡发挥其致癌作用。

3. 炎症微环境与肝癌细胞

1) HCC是一种典型的炎症相关肿瘤。肿瘤生长和浸润的过程总是伴随着细胞凋亡或坏死,从而引起众多炎症介质的释放。肿瘤细胞和炎性细胞也会产生趋化因子、细胞因子和生长因子,从而诱导血管生成和进一步的炎症。这些炎症介质、炎症细胞和肿瘤细胞相互作用,形成炎症级联反应,导致纤维化、肝硬化和肝癌。

2) 肿瘤血管生成

新生血管的形成在癌症的进展和转移中起着重要作用。HCC细胞可以分泌促血管生成因子(如VEGF、EGF、PDGF、血小板源性内皮细胞生长因子),吸引各类细胞,如邻近非肿瘤组织的内皮细胞、循环内皮细胞、骨髓源性内皮祖细胞(EPC)和血管细胞,到新血管生成的部位。内皮细胞和被膜细胞之间的PDGF信号被认为可以稳定新血管。肿瘤血管的被膜细胞形状不规则松散附着,并分泌VEGF和IL-6,将过程扩展到邻近的血管 [54]。肿瘤相关成纤维细胞(CAF)通过分泌SDF-1招募EPCs促进肿瘤血管生成,动员的EPCs参与HCC的肿瘤血管生成 [55]。肿瘤相关成纤维细胞(CAF)和肿瘤相关巨噬细胞(TAMs)的积累经常发生在边缘区,围绕着突起的肿瘤细胞的岛屿,它们包含通过分泌VEGF,TNF-a,IL-8,成纤维细胞生长因子(FGF),MMP-2,MMP-7,MMP-9,MMP-12和COX-2。一个丰富的肿瘤微环境可加速单核细胞和巨噬细胞的招募。这些复杂的细胞相互作用也通过刺激内皮细胞浸润和招募间充质干细胞来加速肿瘤血管生成 [56]。

3) HCC转移的影响因素

基质细胞、ECM成分和各种细胞因子与肿瘤细胞的相互作用可促进HCC转移。对癌细胞和CAF侵入的共培养物进行实验发现,导致肿瘤进展的主导细胞总是CAFs,癌细胞会移入CAF后面的ECM。CAFs和TAMs可以分泌MMPs、uPA、EGF和TNF-a来促进癌症转移 [57]。此外,内皮E-选择素可能是癌细胞经血流转移的主要介质,可能增加人肝癌细胞对静脉内皮细胞的黏附 [58]。缺氧是HCC转移的另一个重要因素,在缺氧环境下,主要转录因子HIF-1 (hypoxia induced factor-1, HIF-1)会被诱导和激活,缺氧还可以通过下调内源性降解机制,诱导β-catenin在4个不同的HCC细胞系中过度表达和细胞内积累,促进HCC的侵袭和转移 [59]。

4) 上皮向间充质转化(EMT)

近年来的研究表明,EMT是肿瘤侵袭和转移的关键步骤。EMT是指在特定条件下上皮细胞间紧密的细胞间连接被破坏,导致原来的极性、秩序和一致性丧失。在这种情况下,上皮细胞倾向于表现出间质细胞特征,并发展迁移能力,凋亡受到抑制 [60]。

各种炎症因子直接或间接参与HCC的EMT过程。CXC趋化因子家族,尤其是CXCL1和CXCL10,在HCC中也发挥EMT的重要作用。CXCL1通过刺激线粒体代谢和激活EMT过程促进肿瘤发生 [61]。CXCL10通过上调MMP-2表达参与EMT [62]。某些EMT蛋白效应物(如Snail)的上调也可通过诱导IL-1、IL-6、IL-8和环氧合酶-2 (COX-2)的表达而导致肿瘤微环境的持续炎症 [63]。缺氧诱导因子(HIFs)也参与肿瘤炎症,通过引起炎症细胞浸润和炎症反应,增强组织的代谢活性。由此引起的炎症增加和相关的炎症反应导致对氧气的需求增加。炎症因子也会引起血管收缩,从而进一步降低炎症环境中的氧气水平。因此,低氧微环境中会产生高水平的HIFs [64]。炎症、缺氧和EMT之间的EMT和炎症相互作用似乎是形成HCC微环境的关键环节 [65]。

4. 炎症微环境与肝癌肿瘤干细胞(CSCs)

1) CSCs具有正常组织干细胞的功能特性,被认为负责肿瘤的发生、进展、化疗耐药的获得以及治疗后的复发形成 [66]。出生后动物的肝细胞可以通过自我复制来恢复肝脏质量。利用病毒感染动力学的数学模型,在慢性HBV感染中,每天有0.3%到3%的肝细胞被杀死,替换以维持稳定的肝细胞质量。这与慢性乙型肝炎的肝细胞增殖水平一致 [67]。

2) CSCs需要一个支持性的微环境来维持和生存,这种微环境通过细胞因子、细胞外基质(ECM)和可溶性因子产生保护和促进生长的环境。癌症相关的成纤维细胞(CAF)可快速增殖和产生促进肿瘤的因子,例如VEGF (血管内皮生长因子)、SDF1 (基质衍生因子1)、HGF (肝细胞生长因子)或CXCL (趋化因子[C-X-C基序]配体),从而促进肿瘤的生长和进展 [68]。CSCs和CAF之间的通信是维持干性所必需的,并由STAT-3-NF-κB [69]、Noch [70] 或Wnt [71] 等通路的激活介导。这种相互作用还可以促进大量肿瘤细胞向CSCs的迁移、扩增和去分化。肝星状细胞(HSCs)的基质细胞群在慢性肝损伤条件下表现为肌成纤维细胞样表型。在癌症中,这些细胞在CSC生态位水平上与CAF共享许多相同的功能 [72]。通过对HSC与CSCs之间的串扰的研究,发现转录因子Forkhead Box M1 (FOXM1)在体外激活和维持CSCs干细胞性的过程中起主要作用。在这两个群体的共培养中抑制FOXM1会扰乱串扰,而FOXM1的过表达则逆转了抑制的效果 [73]。微环境还包括抗炎/促肿瘤免疫细胞的浸润。抗炎细胞将被吸引来处理促炎的先天免疫细胞(如M1巨噬细胞和自然杀伤细胞)和细胞毒性T细胞的作用。肿瘤相关巨噬细胞(TAMs)和髓系来源的抑制细胞(MDSCs) [74],通过释放细胞因子(如IL-6)激活STAT3,最终诱导几条与干细胞相关的通路EMT和CSC标记物(如CD133)的表达,从而增强干性,有利于肿瘤和转移前状态。突显微环境对维持CSCs重要性的是,TAM耗竭导致CSC数量、肿瘤大小和转移减少,而MDSC耗尽增加细胞毒性T细胞的作用并减少肿瘤生长 [75]。慢性病毒相关的炎症环境也被认为是促进CSC增殖的重要因素 [76]。据报道,带有CSC标记(如EpCAM)表达干细胞样转录因子的细胞,如Nanog或Oct4,也以正常或截短形式表达HBV的乙型肝炎病毒X蛋白(HBx) [77]。然而,HBx并不是唯一与干性相关的HBV蛋白。病毒前S1蛋白诱导癌细胞中CD133、CD117和CD90的表达,导致裸鼠体内球体的形成、迁移、成瘤和肿瘤生长的增加 [78]。所以,病毒蛋白的这种更高的复制和/或增加的产量可以诱导或维持CSC状态而导致HCC的进展 [79]。故肿瘤微环境可能是慢性炎症条件,这可以促进肿瘤细胞的生长、存活、侵袭和转移。

3) 微环境也会影响肿瘤干细胞的特性,导致恶性表型。从人肝癌微血管内皮细胞中分离出单细胞CSC克隆,并进一步用不同肿瘤细胞衍生的条件培养基模拟肿瘤微环境进行处理。结果显示分化为相应的肿瘤细胞,并表达特异性肿瘤细胞标志物 [80]。肿瘤基质细胞的主要成分是癌相关成纤维细胞(CAFs),其阳性表达CD90和CD44。与人HCC细胞系Huh7和JHH-6共培养后,与非肿瘤成纤维细胞(NTF)相比,CAFs增强了TGFB1和FAP的mRNA表达。这些研究结果表明,CAFs和HCC相互作用,在肝病的维持和进展中发挥作用 [81]。从人HCC细胞中分离出CD44+群体,用肿瘤相关巨噬细胞(TAMs)孵育,可诱导该细胞群体的扩张和肿瘤球的形成。TAM和与HCC细胞系共培养还促进了细胞因子IL-6的表达和CD44+细胞的扩张 [82]。NF-κB通路也可通过调节CSC特征在肝癌中发挥重要作用 [28]。通过给予天然化合物姜黄素(一种有效的IKK抑制剂),以及使用基于RNAi的RelA抑制,旨在说明NF-κB在CSCs中的作用。可以证明,对姜黄素的敏感性与NF-κB抑制的程度和下游信号如JNK、Cyclin D1和STAT3直接相关,故预后不良和具有祖细胞特征的HCC患者最有可能从NF-κB抑制中获益 [83]。You等人进一步证实了NF-κB在肝癌干性中的意义,他们发现新发现的蛋白BC047440在CSCs中高表达,并通过激活NF-κB信号促进肿瘤增殖。shRNA对BC047440的特异性抑制导致核NF-κB减少,并导致CSC相关致瘤性显著降低 [84]。

4) 综上,新证据证明了CSCs在HCC发生和进展中的重要性,并描述了炎症微环境对干性特性的显著影响。因此,该微环境的调节可能具有作为开发更有效治疗的靶标的潜力,以特异性靶向肝脏中的CSCs群体。

5. 结语

总体而言,肝癌独特的炎症–肝癌发生序列清楚地表明,炎症信号通路的激活在肝癌的发病和进展中起着至关重要的作用。在各种肝癌病因的作用下,多种机制导致肝脏炎症级联的激活。肝癌的炎症通路和其他信号传导通路之间也存在相互作用的可能性。尽管大量的临床前和临床研究强调了炎症在肝癌中的重要性,但这种知识的直接临床应用还没有完全实现。同样,尽管在肝癌发生过程中发现了大量靶向炎症通路的天然以及合成药物,但这些令人印象深刻的成果在转化为临床实践方面仍然存在差距。此外,靶向炎症信号传导也存在一定的挑战以及局限性。由于各种炎症途径在多个细胞和亚细胞水平上受到密切调控,这些途径有望为开发新的预防和治疗策略以管理肝癌提供机会。

作者贡献声明

熊凌风负责收集文献,资料分析,撰写并修改文章;区奕猛负责拟定写作思路,指导撰写,修改文章并最后定稿。

NOTES

*通讯作者。

参考文献

[1] Parkin, D.M., Pisani, P., Muñoz, N. and Ferlay, J. (1999) The Global Health Burden of Infection. In: Newton, R., Beral, V. and Weiss, R.A., Eds., Infections and Human Cancer, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 5-33.
[2] Yao, R.R., Li, J.H., Zhang, R., Chen, R.X. and Wang, Y.H. (2018) M2-Polarized Tumor-Associated Macrophages Facilitated Migration Epithelial-Mesenchymal Transition of HCC Cells via the TLR4/STA T3 Signaling Pathway. World Journal of Surgical Oncology, 16, 9.
https://doi.org/10.1186/s12957-018-1312-y
[3] Edmunds, W.J., et al. (1993) The Influence of Age on the Development of the Hepatitis B Carrier State. Proceedings of the Royal Society B: Biological Sciences, 253, 197-201.
https://doi.org/10.1098/rspb.1993.0102
[4] Castello, G., et al. (2010) HCV-Related Hepatocellular Carcinoma: From Chronic Inflammation to Cancer. Clinical Immunology, 134, 237-250.
https://doi.org/10.1016/j.clim.2009.10.007
[5] Zheng, L., You, N., Huang, X., Gu, H., Wu, K., Mi, N. and Li, J. (2019) COMMD7 Regulates NF-kappaB Signaling Pathway in Hepatocellular Carcinoma Stem-Like Cells. Molecular Therapy—Oncolytics, 12, 112-123.
https://doi.org/10.1016/j.omto.2018.12.006
[6] Porta, C., Riboldi, E. and Sica, A. (2011) Mechanisms Linking Pathogens-Associated Inflammation and Cancer. Cancer Letters, 305, 250-262.
https://doi.org/10.1016/j.canlet.2010.10.012
[7] Leonardi, G.C., Candido, S., Cervello, M., et al. (2012) The Tumor Microenvironment in Hepatocellular Carcinoma. International Journal of Oncology, 40, 1733-1747.
[8] Luedde, T. and Schwabe, R.F. (2011) NF-κB in the Liver-Linking Injury, Fibrosis and Hepatocellular Carcinoma. Nature Review Gastroenterology and Hepatology, 8, 108-118.
https://doi.org/10.1038/nrgastro.2010.213
[9] Yang, J.D., Nakamura, I. and Roberts, L.R. (2011) The Tumor Microenvironment in Hepatocellular Carcinoma: Current Status and Therapeutic Targets. Seminars in Cancer Biology, 21, 35-43.
https://doi.org/10.1016/j.semcancer.2010.10.007
[10] Giannitrapani, L., Cervello, M., Soresi, M., Notarbartolo, M., La Rosa, M., Virruso, L., D’Alessandro, N. and Montalto, G. (2002) Circulating IL-6 and sIL-6R in Patients with Hepatocellular Carcinoma. Annals of the New York Academy of Sciences, 963, 46-52.
https://doi.org/10.1111/j.1749-6632.2002.tb04093.x
[11] Roberts, L.R. (2016) Biomarkers for Hepatocellular Carcinoma. Gastroenterology & Hepatology, 12, 252-255.
[12] Kao, J.T., Feng, C.L., Yu, C.J., Tsai, S.M., Hsu, P.N., Chen, Y.L. and Wu, Y.Y. (2015) IL-6, through p-STAT3 Rather than p-STAT1, Activates Hepatocarcinogenesis and Affects the Survival of Hepatocellular Carcinoma Patients: A Cohort Study. BMC gastroenterology, 15, 50.
https://doi.org/10.1186/s12876-015-0283-5
[13] Liu, R., Tang, C., Shen, A., et al. (2016) IL-37 Suppresses Hepatocellular Carcinoma Growth by Converting pSmad3 Signaling from JNK/pSmad3L/c-Myc Oncogenic Signaling to pSmad3C/P21 Tumor-Suppressive Signaling. Oncotarget, 7, 85079-85096.
https://doi.org/10.18632/oncotarget.13196
[14] Lee, Y.J. and Jang, B.K. (2015) The Role of Autophagy in Hepatocellular Carcinoma. International Journal of Molecular Sciences, 16, 26629-26643.
https://doi.org/10.3390/ijms161125984
[15] Li, T.T., Zhu, D., Mou, T., et al. (2017) IL-37 Induces Autophagy in Hepatocellular Carcinoma Cells by Inhibiting the PI3K/AKT/mTOR Pathway. Molecular Immunology, 87, 132-140.
https://doi.org/10.1016/j.molimm.2017.04.010
[16] Xiang, Z.L., et al. (2009) Chemokine Receptor CXCR4 Expression in Hepatocellular Carcinoma Patients Increases the Risk of Bone Metastases and Poor Survival. BMC Cancer, 9, 176.
https://doi.org/10.1186/1471-2407-9-176
[17] Du, D., et al. (2014) The Effects of the CCR6/CCL20 Biological Axis on the Invasion and Metastasis of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 15, 6441-6452.
https://doi.org/10.3390/ijms15046441
[18] Yeung, O.W., et al. (2015) Alternatively, Activated (M2) Macrophages Promote Tumor Growth and Hepatocellular Carcinoma Invasiveness. Journal of Hepatology, 62, 607-616.
https://doi.org/10.1016/j.jhep.2014.10.029
[19] Leng, J., Han, C., Demetris, A.J., et al. (2003) Cyclooxygenase-2 Promotes Hepatocellular Carcinoma Cell Growth through Akt Activation: Evidence for Akt Inhibition in Celecoxib Induces Apoptosis. Hepatology, 38, 756-768.
https://doi.org/10.1053/jhep.2003.50380
[20] Dajani, O.F., Meisdalen, K., Guren, T.K., Aasrum, M., Tveteraas, I.H., Lilleby, P., Thoresen, G.H., Sandnes, D. and Christoffersen, T. (2008) Prostaglandin E2 Upregulates EGF-Stimulated Signaling in Mitogenic Pathways Involving Akt and ERK in Hepatocytes. Journal of Cellular Physiology, 214, 371-380.
https://doi.org/10.1002/jcp.21205
[21] Hatziapostolou, M., Polytarchou, C., Aggelidou, E., Drakaki, A., Poultsides, G.A., Jaeger, S.A., Ogata, H., Karin, M., Struhl, K., Hadzopoulou-Cladaras, M. and Iliopoulos, D. (2011) An HNF4α-miRNA an Inflammatory Feedback Circuit Regulates Hepatocellular Oncogenesis. Cell, 147, 1233-1247.
https://doi.org/10.1016/j.cell.2011.10.043
[22] Bonavita, E., Gentile, S., Rubino, M., Maina, V., Papait, R., Kunderfranco, P., et al. (2015) PTX3 Is an Extrinsic Oncosuppressor Regulating Complement-Dependent Inflammation in Cancer. Cell, 160, 700-714.
https://doi.org/10.1016/j.cell.2015.01.004
[23] Rava, M., D’Andrea, A., Doni, M., Kress, T.R., Ostuni, R., Bianchi, V., et al. (2017) Mutual Epithelium-Macrophage Dependency in Liver Carcinogenesis Mediated by ST18. Hepatology (Baltimore, Md), 65, 1708-1719.
https://doi.org/10.1002/hep.28942
[24] Wang, D., Yang, L., Yue, D., Cao, L., Li, L., Wang, D., et al. (2019) Macrophage-Derived CCL22 Promotes an Immunosuppressive Tumor Microenvironment via IL-8 in Malignant Pleural Effusion. Cancer Letters, 452, 244-253.
https://doi.org/10.1016/j.canlet.2019.03.040
[25] Yin, C., Evason, K.J., Asahina, K. and Stainier, D.Y.R. (2013) Hepatic Stellate Cells in Liver Development, Regeneration, and Cancer. Journal of Clinical Investigation, 123, 1902-1910.
https://doi.org/10.1172/JCI66369
[26] Chen, Y., Choi, S.S., Michelotti, G.A., Chan, I.S., Swiderska-Syn, M., Karaca, G.F., et al. (2012) Hedgehog Controls Hepatic Stellate Cell Fate by Regulating Metabolism. Gastroenterology, 143, 1319-1329.
https://doi.org/10.1053/j.gastro.2012.07.115
[27] Maeda, S., Kamata, H., Luo, J.L., Leffert, H. and Karin, M. (2005) IKKβ Couples Hepatocyte Death to Cytokine-Driven Compensatory Proliferation That Promotes Chemical Hepatocarcinogenesis. Cell, 121, 977-990.
https://doi.org/10.1016/j.cell.2005.04.014
[28] Maed, S., Hikiba, Y., Sakamoto, K., Nakagawa, H., Hirata, Y., Hayakawa, Y., Yanai, A., Ogura, K., Karin, M. and Omata, M. (2009) I Kappa B Kinase Beta/Nuclear Factor-kappaB Activation Controls the Development of Liver Metastasis by Way of Interleukin-6 Expression. Hepatology, 50, 1851-1860.
https://doi.org/10.1002/hep.23199
[29] Taub, R. (2003) Hepatoprotection via the IL-6/Stat3 Pathway. Journal of Clinical Investigation, 112, 978-980.
https://doi.org/10.1172/JCI19974
[30] Van Hees, S., Michielsen, P. and Vanwolleghem, T. (2016) Circulating Predictive and Diagnostic Biomarkers for Hepatitis B Virus-Associated Hepatocellular Carcinoma. World Journal of Gastroenterology, 22, 8271.
https://doi.org/10.3748/wjg.v22.i37.8271
[31] Kao, J.-T., Feng, C.-L., Yu, C.-J., Tsai, S.-M., Hsu, P.-N., Chen, Y.-L. and Wu, Y.-Y. (2015) IL-6, through p-STAT3 Rather than p-STAT1, Activates Hepatocarcinogenesis and Affects the Survival of Hepatocellular Carcinoma Patients: A Cohort Study. BMC Gastroenterology, 15, 50.
https://doi.org/10.1186/s12876-015-0283-5
[32] He, G., Yu, G.-Y., Temkin, V., Ogata, H., Kuntzen, C., Sakurai, T., Sieghart, W., Peck-Radosavljevic, M., Leffert, H.L. and Karin, M. (2010) Hepatocyte IKKβ/NF-κB Inhibits Tumor Promotion and Progression by Preventing Oxidative Stress-Driven STAT3 Activation. Cancer Cell, 17, 286-297.
https://doi.org/10.1016/j.ccr.2009.12.048
[33] Rebouissou, S., Amessou, M., Couchy, G., Poussin, K., Imbeaud, S., Pilati, C., Izard, T., Balabaud, C., Bioulac-Sage, P. and Zucman-Rossi, J. (2009) Frequent In-Frame Somatic Deletions Activate gp130 in Inflammatory Hepatocellular Tumors. Nature, 457, 200.
https://doi.org/10.1038/nature07475
[34] Kusaba, M., Nakao, K., Goto, T., Nishimura, D., Kawashima, H., Shibata, H., Motoyoshi, Y., Taura, N., Ichikawa, T. and Hamasaki, K. (2007) Abrogation of Constitutive STAT3 Activity Sensitizes Human Hepatoma Cells to TRAIL-Mediated Apoptosis. Journal of Hepatology, 47, 546-555.
https://doi.org/10.1016/j.jhep.2007.04.017
[35] Jiang, R., Tan, Z., Deng, L., Chen, Y., Xia, Y., Gao, Y., Wang, X. and Sun, B. (2011) Interleukin-22 Promotes Human Hepatocellular Carcinoma by Activation of STAT3. Hepatology, 54, 900-909.
https://doi.org/10.1002/hep.24486
[36] Mercer, T.R., Dinger, M.E. and Mattick, J.S. (2009) Long Non-Coding RNAs: Insights into Functions. Nature Reviews Genetics, 10, 155.
https://doi.org/10.1038/nrg2521
[37] Cheng, C.J., Bahal, R., Babar, I.A., Pincus, Z., Barrera, F., Liu, C., et al. (2015) MicroRNA Silencing for Cancer Therapy Is Targeted to the Tumor Microenvironment. Nature, 518, 107-110.
https://doi.org/10.1038/nature13905
[38] Zhou, D., Huang, C., Lin, Z., et al. (2014) Macrophage Polarization and Function Emphasize the Evolving Roles of Coordinated Regulation of Cellular Signaling Pathways. Cell Signal, 26, 192-197.
https://doi.org/10.1016/j.cellsig.2013.11.004
[39] Zhang, N., Duan, W.D., Leng, J.J., Zhou, L., Wang, X., Xu, Y.Z., Wang, X.D., Zhang, A.Q. and Dong, J.H. (2015) STAT3 Regulates the Migration and Invasion of a Stem-Like Subpopulation through microRNA-21 and Multiple Targets in Hepatocellular Carcinoma. Oncology Reports, 33, 1493-1498.
https://doi.org/10.3892/or.2015.3710
[40] Wang, B., Majumder, S., Nuovo, G., Kutay, H., Olivia, S., Patel, T., Schmittgen, T.D., Croce, C., Ghoshal, K. and Jacob, S.T. (2009) Role of microRNA-155 at Early Stages of Hepatocarcinogenesis Induced by Choline-Deficient and Amino Acid-Defined Diet in C57BL/6 Mice. Hepatology, 50, 1152-1161.
https://doi.org/10.1002/hep.23100
[41] Li, X.Q., Ren, Z.X., Li, K., Huang, J.J., Huang, Z.T., Zhou, T.R., Cao, H.Y., Zhang, F.X. and Tan, B. (2018) Key Anti-Fibrosis Associated Long Noncoding RNAs Identified in Human Hepatic Stellate Cell via Transcriptome Sequencing Analysis. International Journal of Molecular Sciences, 19, 675.
https://doi.org/10.3390/ijms19030675
[42] Ye, Y., Xu, Y., Lai, Y., et al. (2018) Long Noncoding RNA Cox-2 Prevents Immune Evasion and Metastasis of Hepatocellular Carcinoma by Altering M1/M2 Macrophage Polarization. Journal of Cellular Biochemistry, 119, 2951-2963.
https://doi.org/10.1002/jcb.26509
[43] Marquardt, J.U. (2018) The Role of Transforming Growth Factor-beta in Human Hepatocarcinogenesis: Mechanistic and Therapeutic Implications from an Integrative Multiomics Approach. Gastroenterology, 154, 17-20.
https://doi.org/10.1053/j.gastro.2017.11.015
[44] Merdrignac, A., Angenard, G., Allain, C., Petitjean, K., Berget, D., Bellaud, P., Fautrel, A., Turlin, B., Clement, B., Dooley, S., et al. (2018) A Novel Transforming Growth Factor Beta-Induced Long Noncoding RNA Promotes an Inflammatory Microenvironment in Human Intrahepatic Cholangiocarcinoma. Hepatology Communications, 2, 254-269.
https://doi.org/10.1002/hep4.1142
[45] Yuan, J.H., Yang, F., Wang, F., Ma, J.Z., Guo, Y.J., Tao, Q.F., Liu, F., Pan, W., Wang, T.T., Zhou, C.C., et al. (2014) A Long Noncoding RNA Activated by TGF-beta Promotes the Invasion-Metastasis Cascade in Hepatocellular Carcinoma. Cancer Cell, 25, 666-681.
https://doi.org/10.1016/j.ccr.2014.03.010
[46] Almajhdi, F.N., Al-Quadri, A.Y. and Hussain, Z. (2013) Differential Expression of Transforming Growth Factor-beta1 and HBx Enhances Hepatitis B Virus Replication and Augments Host Immune Cytokines and Chemokines. Annals of Hepatology, 12, 408-415.
https://doi.org/10.1016/S1665-2681(19)31003-8
[47] Xiang, W.Q., Feng, W.F., Ke, W., Sun, Z., Chen, Z. and Liu, W. (2011) Hepatitis B Virus X Protein Stimulates IL-6 Expression in Hepatocytes via a MyD88-Dependent Pathway. Journal of Hepatology, 54, 26-33.
https://doi.org/10.1016/j.jhep.2010.08.006
[48] Sheng, T., Wang, B., Deng, B., Qu, L., Qi, X.S., Wang, X.L., Deng, G.L. and Sun, X. (2015) The Relationship between Serum Interleukin-6 and the Recurrence of Hepatitis b Virus-Related Hepatocellular Carcinoma after Curative Resection. Medicine (Baltimore), 94, e941.
https://doi.org/10.1097/MD.0000000000000941
[49] Xia, L., Tian, D., Huang, W., Zhu, H., Wang, J., Zhang, Y., Hu, H., Nie, Y., Fan, D. and Wu, K. (2012) Upregulation of IL-23 Expression in Patients with Chronic Hepatitis B Is Mediated by the HBx/ERK/NF-kB Pathway. The Journal of Immunology, 188, 753-764.
https://doi.org/10.4049/jimmunol.1101652
[50] Wang, D., Zou, L., Liu, X., Zhu, H. and Zhu, R. (2016) Chemokine Expression Profiles of Human Hepatoma Cell Lines Mediated by Hepatitis b Virus x Protein. Pathology and Oncology Research, 22, 393-399.
https://doi.org/10.1007/s12253-015-0014-9
[51] Tangkijvanich, P., Thong-Ngam, D., Mahachai, V., Theamboonlers, A. and Poovorawan, Y. (2007) Role of Serum Interleukin-18 as a Prognostic Factor in Patients with Hepatocellular Carcinoma. World Journal of Gastroenterology, 13, 4345-4349.
https://doi.org/10.3748/wjg.v13.i32.4345
[52] Liu, K.G., Shao, X.L., Xie, H.H., Xu, L., Zhao, H., Guo, Z.H., Li, L. and Liu, J. (2010) The Expression of Hepatitis B Virus X Protein and Cyclooxygenase-2 in Hepatitis B Virus-Related Hepatocellular Carcinoma: Correlation with Microangiogenesis and Metastasis, and What Is the Possible Mechanism. Chinese Journal of Hepatology, 18, 831-836.
[53] Zheng, B.Y., Fang, X.F., Zou, L.Y., Huang, Y.H., Chen, Z.X., Li, D., Zhou, L.Y., Chen, H. and Wang, X.Z. (2014) The Co-Localization of HBx and COXIII Upregulates COX-2 Promoting HepG2 Cell Growth. International Journal of Oncology, 45, 1143-1150.
https://doi.org/10.3892/ijo.2014.2499
[54] Yang, Z.F. and Poon, R.T. (2008) Vascular Changes in Hepatocellular Carcinoma. The Anatomical Record (Hoboken), 291, 721-734.
https://doi.org/10.1002/ar.20668
[55] Yu, D., Sun, X., Qiu, Y., et al. (2007) Identification and Clinical Significance of Mobilized Endothelial Progenitor Cells in Tumor Vasculogenesis of Hepatocellular Carcinoma. Clinical Cancer Research, 13, 3814-3824.
https://doi.org/10.1158/1078-0432.CCR-06-2594
[56] Itano, N., Zhuo, L. and Kimata, K. (2008) Impact of the Hyaluronan-Rich Tumor Microenvironment on Cancer Initiation and Progression. Cancer Science, 99, 1720-1725.
https://doi.org/10.1111/j.1349-7006.2008.00885.x
[57] Lewis, C.E. and Pollard, J.W. (2006) Distinct Role of Macrophages in Different Tumor Microenvironments. Cancer Research, 66, 605-612.
https://doi.org/10.1158/0008-5472.CAN-05-4005
[58] Song, G., Ohashi, T., Sakamoto, N. and Sato, M. (2006) Adhesive Force of Human Hepatoma HepG2 Cells to Endothelial Cells and Expression of E-Selectin. Molecular and Cellular Biomechanics, 3, 61-68.
[59] Liu, L., Zhu, X.D., Wang, W.Q., et al. (2010) Activation of Beta-Catenin by Hypoxia in Hepatocellular Carcinoma Contributes to Enhanced Metastatic Potential and Poor Prognosis. Clinical Cancer Research, 16, 2740-2750.
https://doi.org/10.1158/1078-0432.CCR-09-2610
[60] Polyak, K. and Weinberg, R.A. (2009) Transitions between Epithelial and Mesenchymal States: Acquisition of Malignant and Stem Cell Traits. Nature Reviews Cancer, 9, 265-273.
https://doi.org/10.1038/nrc2620
[61] Ren, T., Zhu, L. and Cheng, M. (2017) CXCL10 Accelerates EMT and Metastasis by MMP-2 in Hepatocellular Carcinoma. American Journal of Translational Research, 9, 2824-2837.
[62] Cui, X., Li, Z., Gao, J., Gao, P.J., Ni, Y.B. and Zhu, J.Y. (2016) Elevated CXCL1 Increases Hepatocellular Carcinoma Aggressiveness and Is Inhibited by miRNA-200a. Oncotarget, 7, 65052-65066.
https://doi.org/10.18632/oncotarget.11350
[63] Lin, H., Yang, B. and Teng, M. (2017) T-Cell Immunoglobulin Mucin-3 as a Potential Inducer of the Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Oncology Letters, 14, 5899-5905.
https://doi.org/10.3892/ol.2017.6961
[64] Liu, Y., Liu, Y., Yan, X., Xu, Y., Luo, F., Ye, J., Yan, H., Yang, X., Huang, X., Zhang, J., et al. (2014) HIFs Enhance the Migratory and Neoplastic Capacities of Hepatocellular Carcinoma Cells by Promoting EMT. Tumor Biology, 35, 8103-8114.
https://doi.org/10.1007/s13277-014-2056-0
[65] Wang, Z., Luo, L., Cheng, Y., et al. (2018) Correlation between Postoperative Early Recurrence of Hepatocellular Carcinoma and Mesenchymal Circulating Tumor Cells in Peripheral Blood. Journal of Gastrointestinal Surgery, 22, 633-639.
https://doi.org/10.1007/s11605-017-3619-3
[66] Castven, D., Czauderna, C. and Marquardt, J.U. (2017) Contribution of the Cancer Stem Cell Phenotype to Hepatocellular Carcinoma Resistance. In: Villanueva, A., Ed., Resistance to Molecular Therapies for Hepatocellular Carcinoma, Springer International Publishing, Cham, Volume 13, 65-91.
https://doi.org/10.1007/978-3-319-56197-4_4
[67] Nowak, M.A., Bonhoeffer, S., Hill, A.M., Boehme, R., Thomas, H.C. and McDade, H. (1996) Viral Dynamics in Hepatitis B Virus Infection. Proceedings of the National Academy of Sciences of the United States of America, 93, 4398.
https://doi.org/10.1073/pnas.93.9.4398
[68] Junttila, M.R. and de Sauvage, F.J. (2013) Influence of Tumor Micro-Environment Heterogeneity on Therapeutic Response. Nature, 501, 346-354.
https://doi.org/10.1038/nature12626
[69] Iliopoulos, D., Hirsch, H.A., Wang, G. and Struhl, K. (2011) Inducible Formation of Breast Cancer Stem Cells and Their Dynamic Equilibrium with Non-Stem Cancer Cells via IL6 Secretion. Proceedings of the National Academy of Sciences of the United States of America, 108, 1397.
https://doi.org/10.1073/pnas.1018898108
[70] Tsuda, A., Chow, A., Wu, J., Somlo, G., Chu, P., Loera, S., Luu, T., Li, A.X., Wu, X., Ye, W., et al. (2012) CCL2 Mediates Crosstalk between Cancer Cells and Stromal Fibroblasts That Regulates Breast Cancer Stem Cells. Cancer Research, 72, 2768.
https://doi.org/10.1158/0008-5472.CAN-11-3567
[71] Todaro, M., Gaggianesi, M., Catalano, V., Benfante, A., Iovino, F., Biffoni, M., Apuzzo, T., Sperduti, I., Volpe, S., Cocorullo, G., et al. (2014) CD44v6 Is a Marker of Constitutive and Reprogrammed Cancer Stem Cells Driving Colon Cancer Metastasis. Cell Stem Cell, 14, 342-356.
https://doi.org/10.1016/j.stem.2014.01.009
[72] Cui, Y., Sun, S., Ren, K., Quan, M., Song, Z., Zou, H., Li, D. and Cao, J. (2016) Reversal of Liver Cancer-Associated Stellate Cell-Induced Stem-Like Characteristics in SMMC-7721 Cells by 8-Bromo-7-methoxy Chrysin via Inhibiting STAT3 Activation. Oncology Reports, 35, 2952-2962.
https://doi.org/10.3892/or.2016.4637
[73] Chen, A., Xu, C., Luo, Y., Liu, L., Song, K., Deng, G., Yang, M., Cao, J., Yuan, L. and Li, X. (2019) Disruption of Crosstalk between LX-2 and Liver Cancer Stem-Like Cells from MHCC97H Cells by DFOG via Inhibiting FOXM1. Acta Biochimica et Biophysica Sinica, 51, 1267-1275.
https://doi.org/10.1093/abbs/gmz129
[74] Sica, A., Porta, C., Amadori, A. and Pastò, A. (2017) Tumor-Associated Myeloid Cells as Guiding Forces of Cancer Cell Stemness. Cancer Immunology, Immunotherapy, 66, 1025-1036.
https://doi.org/10.1007/s00262-017-1997-8
[75] Otvos, B., Silver, D.J., Mulkearns-Hubert, E.E., Alvarado, A.G., Turaga, S.M., Sorensen, M.D., Rayman, P., Flavahan, W.A., Hale, J.S., Stoltz, K., et al. (2016) Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid-Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion. Stem Cells, 34, 2026-2039.
https://doi.org/10.1002/stem.2393
[76] Chang, T.-S., Chen, C.-L., Wu, Y.-C., Liu, J.-J., Kuo, Y.C., Lee, K.-F., Lin, S.-Y., Lin, S.-E., Tung, S.-Y., Kuo, L.-M., et al. (2016) Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma. PLoS ONE, 11, e0149897.
https://doi.org/10.1371/journal.pone.0149897
[77] Ng, K.-Y., Chai, S., Tong, M., Guan, X.-Y., Lin, C.-H., Ching, Y.-P., Xie, D., Cheng, A.S.-L. and Ma, S. (2016) C-Terminal Truncated Hepatitis B Virus X Protein Promotes Hepatocellular Carcinogenesis through Induction of Cancer and Stem Cell-Like Properties. Oncotarget, 7, 24005-24017.
https://doi.org/10.18632/oncotarget.8209
[78] Liu, Z., Dai, X., Wang, T., Zhang, C., Zhang, W., Zhang, W., Zhang, Q., Wu, K., Liu, F., Liu, Y., et al. (2017) Hepatitis B Virus PreS1 Facilitates Hepatocellular Carcinoma Development by Promoting Appearance and Self-Renewal of Liver Cancer Stem Cells. Cancer Letters, 400, 149-160.
https://doi.org/10.1016/j.canlet.2017.04.017
[79] Shirasaki, T., Honda, M., Yamashita, T., Nio, K., Shimakami, T., Shimizu, R., Nakasyo, S., Murai, K., Shirasaki, N., Okada, H., et al. (2018) The Osteopontin-CD44 Axis in Hepatic Cancer Stem Cells Regulates IFN Signaling and HCV Replication. Scientific Reports, 8, Article No. 13143.
https://doi.org/10.1038/s41598-018-31421-6
[80] Liu, H., Zhang, W., Jia, Y., Yu, Q., Grau, G.E., Peng, L., Ran, Y., Yang, Z., Deng, H. and Lou, J. (2013) Single-Cell Clones of Liver Cancer Stem Cells Have the Potential of Differentiating into Different Types of Tumor Cells. Cell Death & Disease, 4, e857.
https://doi.org/10.1038/cddis.2013.340
[81] Sukowati, C.H., Anfuso, B., Croce, L.S. and Tiribelli, C. (2015) The Role of Multipotent Cancer-Associated Fibroblasts in Hepatocarcinogenesis. BMC Cancer, 15, 188.
https://doi.org/10.1186/s12885-015-1196-y
[82] Wan, S., Zhao, E., Kryczek, I., Vatan, L., Sadovskaya, A., Ludema, G., Simeone, D.M., Zou, W. and Welling, T.H. (2014) Tumor-Associated Macrophages Produce Interleukin Six and Signal via STAT3 to Promote the Expansion of Human Hepatocellular Carcinoma Stem Cells. Gastroenterology, 147, 1393-1404.
https://doi.org/10.1053/j.gastro.2014.08.039
[83] Marquardt, J.U., Gomez-Quiroz, L., Arreguin Camacho, L.O., Pinna, F., Lee, Y.H., Kitade, M., Dominguez, M.P., Castven, D., Breuhahn, K., Conner, E.A., et al. (2015) Curcumin Effectively Inhibits Oncogenic NF-kappaB Signaling and Restrains Stemness Features in Liver Cancer. Journal of Hepatology, 63, 661-669.
https://doi.org/10.1016/j.jhep.2015.04.018
[84] You, N., Zheng, L., Liu, W., Zhong, X., Wang, W. and Li, J. (2014) Proliferation Inhibition and Differentiation Induction of Hepatic Cancer Stem Cells by Knockdown of BC047440: A Potential Therapeutic Target of Stem Cell Treatment for Hepatocellular Carcinoma. Oncology Reports, 31, 1911-1920.
https://doi.org/10.3892/or.2014.3043