垂体腺瘤免疫治疗现状及进展
Current Status and Progress of Immunotherapy for Pituitary Adenoma
DOI: 10.12677/ACM.2021.1110677, PDF, HTML, XML, 下载: 293  浏览: 523 
作者: 田智杰*, 张越林#:西安医学院,陕西 西安
关键词: 垂体腺瘤免疫检查点抑制剂免疫治疗Pituitary Adenoma Immune Checkpoint Inhibitors Immunotherapy
摘要: 垂体腺瘤是颅内一种常见的肿瘤,占颅内原发性肿瘤的10%~20%,垂体肿瘤在成人中发病率占第三位,仅次于脑胶质细胞瘤和脑膜瘤。目前手术、药物和放射治疗是垂体腺瘤治疗的三大重要治疗策略。然而垂体瘤易复发,控制欠佳,急需寻求新的治疗手段。肿瘤免疫治疗是一种很有前景的治疗方法,目前已应用于包括垂体肿瘤在内的多种肿瘤的治疗。本文通过回顾近年来国内外最新进展,我们总结了免疫检查点的最新发现及其作为垂体肿瘤免疫治疗靶点的潜力,以期为垂体腺瘤治疗提供一定的参考。
Abstract: Pituitary adenoma is a common intracranial tumor, which accounts for 10%~20% of the primary intracranial tumors. Pituitary adenoma is the third most common tumor in adults, next to glioma and meningioma. At present, surgery, drug therapy and radiotherapy are three important therapeutic strategies for pituitary adenomas. However, pituitary adenoma is easy to recur and has poor control, so it is urgent to seek new treatment. Tumor immunotherapy is a promising therapeutic method, which has been applied to a variety of tumors, including pituitary tumors. In this review, we summarize the latest findings of immunologic examination and site selection and their potential as immunotherapeutic targets for pituitary tumors in order to provide some references for the treatment of pituitary adenoma.
文章引用:田智杰, 张越林. 垂体腺瘤免疫治疗现状及进展[J]. 临床医学进展, 2021, 11(10): 4611-4615. https://doi.org/10.12677/ACM.2021.1110677

1. 引言

垂体瘤是发生在垂体腺的一种非转移性肿瘤,约占颅内肿瘤的10%~15%,是人类第二常见的原发性脑肿瘤 [1]。大多数垂体瘤是非侵袭性良性肿瘤,生长缓慢。然而高达35%的垂体腺瘤是侵袭性腺瘤,并浸润邻近组织,包括海绵状窦、骨、蝶窦和神经鞘 [2]。有一小部分脑垂体肿瘤临床上具有侵袭性,在手术和放疗后可能继续存在或复发 [3]。替莫唑胺(TMZ)对一些侵袭性垂体肿瘤有效,但高达50%的患者对TMZ无反应,中位进展时间短 [4]。靶向治疗,包括生长因子及其受体、细胞内信号通路和调节细胞周期的蛋白质,也具有有限的有效性 [5]。同时,一些病理学家认为侵袭性垂体肿瘤具有恶性潜能,需要早期发现并积极治疗侵袭性垂体肿瘤,以减少肿瘤复发,延长生存 [6]。因此,迫切需要提出新的治疗方案。随着对其免疫微环境的进一步研究,免疫检查点抑制剂可能成为治疗难治性垂体瘤甚至垂体癌的下一个有效选择。本文就不同免疫检查点的研究进展进行综述,并探讨其在垂体肿瘤中的应用前景。

2. 垂体腺瘤免疫治疗的机制

人类免疫系统负责识别自我和非自我,从而保护身体免受被识别为非自我或改变自我的肿瘤。免疫系统通过对肿瘤抗原产生先天和适应性免疫反应来实现对癌症的监测。免疫反应能够抑制肿瘤生长,实现肿瘤消退;然而,肿瘤细胞过度表达时,躲避免疫监视与杀伤,以逃避免疫系统的消除作用,进一步增殖、浸润和转移。T细胞共抑制配体的上调在肿瘤免疫逃逸中起着关键作用,并为临床评估靶向免疫检查点的治疗策略提供了坚实的基础 [7]。

免疫检查点是免疫激活的负调控因子,对控制免疫反应的强度、维持自身耐受和减少组织损伤至关重要。肿瘤利用免疫检查点负调控T细胞的激活。通过阻断细胞毒性T淋巴细胞相关蛋白4 (cytotoxic T-lymphocyte antigen, 4)和程序性细胞死亡1 (programmed cell death ligand, 1),可以通过激活T细胞从而增强抗肿瘤T细胞的细胞毒性、促炎细胞因子的产生和增殖 [8]。

3. 垂体腺瘤免疫微环境

肿瘤免疫微环境(TIM)在肿瘤的发生发展中起着至关重要的作用。研究表明,细胞毒性T细胞(CTL)对肿瘤浸润程度的某些特征可以预测患者的临床结局 [9]。肿瘤浸润淋巴细胞(TILs)和其他单核细胞,如肿瘤相关的巨噬细胞,是TIM的核心成分,参与并调节肿瘤免疫反应,并已作许多实体肿瘤的预后因子,如黑素瘤、卵巢、乳腺、结直肠和尿路上皮癌 [9]。191例PA患者中有66例CD8+细胞浸润率超过5% [10]。一项回顾性研究将淋巴细胞浸润定义为在400倍放大镜的视野中出现15至20个淋巴细胞。他们报告了所有1400个垂体腺瘤中肿瘤浸润性淋巴细胞患病率为2.9%,包括功能性和非功能性类型 [11]。一项病例对照研究在0~5分的范围内对CD45表达进行评分,以获得淋巴细胞浸润的半定量测量。CD45+细胞浸润较轻,在大多数垂体腺瘤中得分为1或0.5,腺瘤患者中肿瘤浸润性淋巴细胞比对照组丰富 [12]。首次对35例患者的肿瘤浸润性淋巴细胞进行定量,方法是在400倍放大的连续10~30个高倍场(HPFs)中计数巨噬细胞和淋巴细胞的数量。CD68+巨噬细胞稀少,平均每HPF 4~8个,CD4+和CD8+细胞相对稀少,不同分泌亚型平均每HPF 4个以下 [13]。肿瘤浸润性淋巴细胞的表型和功能后果是复杂的;然而,在垂体腺瘤患者中,肿瘤浸润性淋巴细胞(TILs)和其他单核细胞的整体存在与复发的高风险和预后不良有关。在平均随访34个月后,有CD45+免疫染色的比没有CD45+免疫染色的垂体腺瘤患者临床预后更差 [12]。这可能与CD45+阳性染色及较高的增殖指数有关,而与CD8+T细胞、肿瘤大小及Knosp分级无关,CD68+细胞数量与肿瘤大小和Knosp分级呈正相关 [13]。有研究表明,海绵窦浸润组的CD8+淋巴细胞数量高于非浸润组,但差异无统计学意义 [14]。在芳基烃受体相互作用蛋白(AIP)突变的垂体腺瘤PAs中也观察到巨噬细胞(CD68+细胞)浸润增加,这与AIP突变腺瘤的侵袭性有关 [15]。综上所述,这些TILs和其他单个核细胞不仅与垂体肿瘤的肿瘤特征和进展有关,而且为预后和靶向治疗提供了依据 [16]。

4. PD-1/PD-L1在垂体肿瘤中的表达

PD-1 (programmed cell death ligand, 1)常表达于B细胞、T细胞、NK细胞等细胞的表面,与PD-L1、PD-L2结合可阻断这些细胞的细胞因子分泌和增殖 [17]。虽然PD-L2也能抑制T细胞功能,但PD-1/PD-L1阻滞剂受到了更多的关注,因为PD-L1在肿瘤细胞中的表达高于PD-L2,即在许多人类肿瘤中,PD-L1的高表达导致预后不良 [18]。PD-1/PD-L1轴抑制剂通过减轻PD-L1介导的对肿瘤浸润T淋巴细胞的抑制和增强肿瘤浸润T调节细胞(Treg)的增殖来发挥其抗肿瘤作用 [19]。例如,抑制剂可以阻断CD8+和CD4+ T细胞上的PD-1受体与靶肿瘤细胞上的PD-L1的相互作用 [20]。PD-L1的表达是抗PD-1/PD-L1治疗反

(a) (b)

Figure 1. Treatment with anti PD-L1 prevents tumor growth and ACTH production in a heterotopic cushing disease model. (a) Following subcutaneous (SC) implantation of AtT20/D16v2 adenomas, treatment with antiPD-L1 (n = 8) significantly restricted tumor growth compared with treatment with isotype control (n = 16; P = 0.0002; exact Wilcoxon of sAUC); (b) Serum ACTH levels measured by ELISA demonstrate decreased ACTH levels following anti-PD-L1 treatment (P < 0.0001; one-way ANOVA; Nave n = 20; TB + control n = 14; TB + anti-PD-L1 n = 7)

图1. 在肿瘤模型中,抗PDL-L1治疗可防止肿瘤生长和ACTH的产生。(a) 植入皮下腺瘤后,与对照组(n = 16)相比,抗PD-L1治疗(n = 8)显著抑制肿瘤生长;(b) ELISA检测血清ACTH水平显示抗PD-L1治疗后ACTH水平降低(P < 0.0001; Naïven = 20; TB + control n = 14; TB + anti-PDL1 n = 7)

应的预测生物标志物。总的来说,目前的研究表明PD-L1在侵袭性垂体肿瘤以及一些功能性垂体肿瘤中均有高表达 [21]。一项涉及10个垂体样本的研究表明,与肿瘤组织相比,PD-L1在正常内分泌组织中的表达没有增加 [22]。虽然某些类型的垂体肿瘤表现出PD-L1高水平表达,但这并不意味着这些肿瘤一定会对免疫检查点抑制作出反应。然而,这些事实表明,免疫检查点抑制可能是一些垂体瘤甚至垂体癌的合理治疗方法。同样,垂体肿瘤本身表现为T细胞浸润,这是检查点阻断效果的先决条件 [21]。在临床前的研究中,皮下肿瘤植入后,抗PD-L1治疗显著抑制肿瘤生长和血清ACTH分泌,与未抗PD-L1治疗的小鼠相比,部分小鼠肿瘤完全消退,这在颅内肿瘤模型中也有观察到(图1(a)、图1(b) ) [23]。有强有力的证据表明免疫疗法在垂体瘤的治疗中是有效的。最近,Sol等人报道了一例垂体癌患者,使用抗CTLA-4、抗PD-L1联合免疫治疗后病情稳定 [24]。综上所述,探索PD-L1高表达垂体瘤或垂体癌的免疫治疗是一项有前景的工作。

5. 总结与展望

近年来,随着对垂体腺瘤的认识不断深入,一些诊疗观念正悄然改变,肿瘤免疫治疗作为一种有前景的治疗方法,近年来受到越来越多的关注。TIM被认为是垂体肿瘤发生、进展、侵袭和预后的关键因素。巨噬细胞、淋巴细胞和PD-L1在不同垂体肿瘤中的表达差异很大,这些免疫因子与垂体肿瘤的临床病理特征相关。临床病例研究表明,免疫治疗似乎对难治性PAs或pc患者有一些临床益处。然而,尽管这些数据表明,肿瘤免疫治疗可能是难治性PAs和pc患者的有效治疗靶点,但这些发现仍需进一步的基础研究和临床试验来验证。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Molitch, M.E. (2017) Diagnosis and Treatment of Pituitary Adenomas: A Review. JAMA, 317, 516-524.
https://doi.org/10.1001/jama.2016.19699
[2] Hansen, T.M., Batra, S., Lim, M., Gallia, G.L., Burger, P.C., Salvatori, R., et al. (2014) Invasive Adenoma and Pituitary Carcinoma: A SEER Database Analysis. Neurosurgical Review, 37, 279-285; Discussion 285-286.
https://doi.org/10.1007/s10143-014-0525-y
[3] Yavropoulou, M.P., Tsoli, M., Barkas, K., Kaltsas, G. and Grossman, A. (2020) The Natural History and Treatment of Non-Functioning Pituitary Adenomas (Non-Functioning PitNETs). Endocrine-Related Cancer, 27, R375-R390.
https://doi.org/10.1530/ERC-20-0136
[4] Kasuki, L. and Raverot, G. (2020) Definition and Diagnosis of Aggressive Pituitary Tumors. Reviews in Endocrine & Metabolic Disorders, 21, 203-208.
https://doi.org/10.1007/s11154-019-09531-x
[5] Raverot, G., Burman, P., McCormack, A., Heaney, A., Petersenn, S., Popovic, V., et al. (2018) European Society of Endocrinology Clinical Practice Guidelines for the Management of Aggressive Pituitary Tumours and Carcinomas. European Journal of Endocrinology, 178, G1-G24.
https://doi.org/10.1530/EJE-17-0796
[6] Lopes, M.B.S. (2017) The 2017 World Health Organization Classification of Tumors of the Pituitary Gland: A Summary. Acta Neuropathologica, 134, 521-535.
https://doi.org/10.1007/s00401-017-1769-8
[7] O’Donnell, J.S., Teng, M.W.L. and Smyth, M.J. (2019) Cancer Immunoediting and Resistance to T Cell-Based Immunotherapy. Nature Reviews Clinical Oncology, 16, 151-167.
https://doi.org/10.1038/s41571-018-0142-8
[8] Ribas, A. and Wolchok, J.D. (2018) Cancer Immunotherapy Using Checkpoint Blockade. Science, 359, 1350-1355.
https://doi.org/10.1126/science.aar4060
[9] Giraldo, N.A., Sanchez-Salas, R., David Peske, J., Vano, Y., Becht, E., Petitprez, F., et al. (2019) The Clinical Role of the TME in Solid Cancer. British Journal of Cancer, 120, 45-53.
https://doi.org/10.1038/s41416-018-0327-z
[10] Wang, P.-F., Wang, T.-J., Yang, Y.-K., Yao, K., Li, Z., Li, Y.M., et al. (2018) The Expression Profile of PD-L1 and CD8+ Lymphocyte in Pituitary Adenomas Indicating for Immunotherapy. Journal of Neuro-Oncology, 139, 89-95.
https://doi.org/10.1007/s11060-018-2844-2
[11] Heshmati, H.M., Kujas, M., Casanova, S., Wollan, P.C., Racadot, J., Van Effenterre, R., et al. (1998) Prevalence of Lymphocytic Infiltrate in 1400 Pituitary Adenomas. Endocrine Journal, 45, 357-361.
https://doi.org/10.1507/endocrj.45.357
[12] Lupi, I., Manetti, L., Caturegli, P., Menicagli, M., Cosottini, M., Iannelli, A., et al. (2010) Tumor Infiltrating Lymphocytes but Not Serum Pituitary Antibodies Are Associated with poor Clinical Outcome after Surgery in Patients with Pituitary Adenoma. The Journal of Clinical Endocrinology and Metabolism, 95, 289-296.
https://doi.org/10.1210/jc.2009-1583
[13] Lu, J.-Q., Adam, B., Jack, A.S., Lam, A., Broad, R.W. and Chik, C.L. (2015) Immune Cell Infiltrates in Pituitary Adenomas: More Macrophages in Larger Adenomas and More T Cells in Growth Hormone Adenomas. Endocrine Pathology, 26, 263-272.
https://doi.org/10.1007/s12022-015-9383-6
[14] Sato, M., Tamura, R., Tamura, H., Mase, T., Kosugi, K., Morimoto, Y., et al. (2019) Analysis of Tumor Angiogenesis and Immune Microenvironment in Non-Functional Pituitary Endocrine Tumors. Journal of Clinical Medicine, 8, Article No. 695.
https://doi.org/10.3390/jcm8050695
[15] Barry, S., Carlsen, E., Marques, P., Stiles, C.E., Gadaleta, E., Berney, D.M., et al. (2019) Tumor Microenvironment Defines the Invasive Phenotype of AIP-Mutation-Positive Pituitary Tumors. Oncogene, 38, 5381-5395.
https://doi.org/10.1038/s41388-019-0779-5
[16] DeNardo, D.G. and Ruffell, B. (2019) Macrophages as Regulators of Tumour Immunity and Immunotherapy. Nature Reviews. Immunology, 19, 369-382.
https://doi.org/10.1038/s41577-019-0127-6
[17] Mehdizadeh, S., Bayatipoor, H., Pashangzadeh, S., Jafarpour, R., Shojaei, Z. and Motallebnezhad, M. (2021) Immune Checkpoints and Cancer Development: Therapeutic Implications and Future Directions. Pathology—Research and Practice, 223, Article ID: 153485.
https://doi.org/10.1016/j.prp.2021.153485
[18] Topalian, S.L., Taube, J.M., Anders, R.A. and Pardoll, D.M. (2016) Mechanism-Driven Biomarkers to Guide Immune Checkpoint Blockade in Cancer Therapy. Nature Reviews Cancer, 16, 275-287.
https://doi.org/10.1038/nrc.2016.36
[19] Vathiotis, I.A., Gomatou, G., Stravopodis, D.J. and Syrigos, N. (2021) Programmed Death-Ligand 1 as a Regulator of Tumor Progression and Metastasis. International Journal of Molecular Sciences, 22, Article No. 5383.
https://doi.org/10.3390/ijms22105383
[20] Marchetti, A., Di Lorito, A. and Buttitta, F. (2017) Why Anti-PD1/PDL1 Therapy Is So Effective? Another Piece in the Puzzle. Journal of Thoracic Disease, 9, 4863-4866.
https://doi.org/10.21037/jtd.2017.11.105
[21] Mei, Y., Bi, W., Greenwald, N.F., Du, Z., Agar, N.Y.R., Kaiser, U.B., et al. (2016) Increased Expression of Programmed Death Ligand 1 (PD-L1) in Human Pituitary Tumors. Oncotarget, 7, 76565-76576.
https://doi.org/10.18632/oncotarget.12088
[22] Pollack, R., Kagan, M., Dresner-Pollak, R. and Neuman, T. (2021) PD-L1 Expression in Normal Endocrine Tissues Is Not Increased Despite High Incidence of Pd-1 Inhibitor-Associated Endocrinopathies. Endocrine Practice, 27, 34-37.
https://doi.org/10.1016/j.eprac.2020.11.004
[23] Kemeny, H.R., Elsamadicy, A.A., Harrison Farber, S., Champion, C.D., Lorrey, S.J., Chongsathidkiet, P., et al. (2020) Targeting PD-L1 Initiates Effective Antitumor Immunity in a Murine Model of Cushing Disease. Clinical Cancer Research, 26, 1141-1151.
https://doi.org/10.1158/1078-0432.CCR-18-3486
[24] Sol, B., de Filette, J.M.K., Awada, G., Raeymaeckers, S., Aspeslagh, S., Andreescu, C.E., et al. (2021) Immune Checkpoint Inhibitor Therapy for ACTH-Secreting Pituitary Carcinoma: A New Emerging Treatment? European Journal of Endocrinology, 184, K1-K5.
https://doi.org/10.1530/EJE-20-0151