肿瘤微环境对MDSCs扩增的调控
Modulation of Myeloid-Derived Suppressor Cells Amplification by Tumor Microenvironment
DOI: 10.12677/ACM.2021.1111741, PDF, HTML, XML, 下载: 374  浏览: 575 
作者: 张瑞新, 李淑晶, 李 硕, 宁方玲*:滨州医学院附属医院肿瘤科,山东 滨州
关键词: 骨髓来源的抑制性细胞肿瘤微环境免疫治疗靶向治疗MDSCs TME Immunotherapy Targeted Therapy
摘要: 骨髓来源的抑制性细胞(Myeloid-derived suppressor cells, MDSCs)是巨噬细胞、粒细胞、树突状细胞(dendritic cells, DCs)的前体集合,这群细胞形态、表型和功能各异,但都具有极强的免疫抑制性。近年来,MDSCs的神秘面纱被逐步揭开,尽管其他多种生理及病理条件都可以对其扩增产生影响,但肿瘤微环境(tumor microenvironment, TME)对MDSCs扩增的调控机制始终是研究热点。本文就肿瘤微环境对MDSCs扩增的调控机制进行综述,并进一步总结MDSCs对于当前抗肿瘤治疗手段的临床价值。
Abstract: Myeloid derived suppressor cells (MDSCs) are the collection of various precursor cells including macrophages, granulocytes and dendritic cells (DCS). These cells have different morphology, phenotype and function, but they all have strong immunosuppression. In recent years, the mystery of MDSCs has been gradually unveiled. Although many other physiological and pathological conditions can affect its amplification, the regulatory mechanism of tumor microenvironment (TME) on MDSCs amplification has always been a research hotspot. This paper reviews the regulatory mechanism of tumor microenvironment on the amplification of MDSCs, and further summarizes the clinical value of MDSCs for the current anti-tumor treatment.
文章引用:张瑞新, 李淑晶, 李硕, 宁方玲. 肿瘤微环境对MDSCs扩增的调控[J]. 临床医学进展, 2021, 11(11): 5039-5047. https://doi.org/10.12677/ACM.2021.1111741

1. 引言

MDSCs是一组具有异质性的不成熟细胞群,一直以来都很难精确描述其表型。目前较为公认的分类主要为以下两种:粒细胞或多形核MDSCs (granulocytes or polymorphonuclear MDSCs, PMN-MDSCs)和单核细胞MDSCs (monocyte MDSCs, M-MDSCs)。在小鼠中,MDSCs的表型通常为CD11b+Gr1+,进一步又分为两种亚型:粒细胞MDSCs (CD11b+Gr1+Ly6CLy6G+)和单核细胞MDSCs (CD11b+Gr1+Ly6C+Ly6G-)。而在人类中,MDSCs的表型通常为Lin−/LowCD33+CD11b+HLA-DR,进一步分为单核细胞MDSCs (Mo-MDSCs,Lin−/LowCD33+CD11b+HLA-DRCD14+CD15)和CD15+粒细胞MDSCs (G-MDSCs, Lin−/LowCD33+CD11b+HLA-DRCD14CD15+)两种亚型。研究表明,人类还存在第三种相对较少的 MDSCs,包括一些具有集落形成活性的细胞和其他骨髓前体细胞,这些细胞被称为早期MDSCs (early MDSCs, eMDSCs),表型为LinHLA-DRCD33+CD11b+CD14CD15,但这群细胞尚未在小鼠中检出 [1] [2]。此外,在脐带血及转移性小儿肉瘤患者的外周血中还存在一群表型特征为HLA-DR+CD33+or CD33−/low的细胞群,因其与成纤维细胞具有相似形态而被命名为纤维细胞样MDSCs (fibroblast myeloid-derived suppressor cells, fMDSCs) [3] [4]。

2. MDSCs的来源

2.1. 经典的髓系激活反应

生理条件下,骨髓间充质干细胞的分化和成熟由粒细胞巨噬细胞集落刺激因子(granulocyte macrophage colony stimulating factor, GM-CSF)驱动 [5]。当机体接收到相对强的信号,比如Toll样受体(Toll-like receptors, TLR)配体、病原体相关分子模式(pathogen-associated molecular patterns, PAMP)和损伤相关分子模式(damage-associated molecular patterns, DAMP)等 [6] [7],髓腔内经典的髓系激活途径将被激活,这个过程强烈但并不持久,可以使骨髓间充质干细胞分化成具有免疫活性的巨噬细胞、粒细胞和树突细胞,对于维持先天性和适应性免疫系统的正常功能起到至关重要的作用 [8]。

2.2. 肿瘤微环境与MDSCs

机体持续受到相对微弱的刺激,如长期感染、肿瘤、肥胖等慢性疾病时,经典的髓系激活反应将受到抑制,骨髓间充质干细胞正常分化受阻,一群相对不成熟的前体细胞大量扩增,机体正常的免疫反应将受到一定程度的抑制。TME是包括MDSCs、免疫抑制性DCs和肿瘤相关巨噬细胞(tumour-associated macrophages, TAMs)在内的多种免疫抑制细胞群的温床,对骨髓细胞的分化影响显著 [9]。并且MDSCs的病理性激活与病理性刺激的暴露时间呈正相关 [10]。

MDSCs的扩增现象可发生于不同类型的肿瘤中,在尿路上皮癌、胰腺癌、肺癌和乳腺癌等多种肿瘤均可检测到其表达增高,这一过程主要受肿瘤源性趋化因子调控,而与肿瘤类型无明显相关性 [6]。

肿瘤细胞和肿瘤相关基质细胞释放的相关细胞因子,如粒细胞集落刺激因子(granulocyte colony-stimulating factor, G-CSF)、GM-CSF、巨噬细胞集落刺激因子(macrophage colony-stimulating factor, M-CSF)、血管内皮生长因子(vascular endothelial growth factor, VEGF)和干细胞因子(stem cell factor, SCF)等,可以干扰正常的骨髓细胞分化和成熟 [11]。这些细胞因子一方面可以加速骨髓间充质干细胞的成熟。另一方面,可以催化异常分化的细胞群对免疫系统产生强烈的抑制作用 [4]。有研究表明,分别使用GM-CSF、M-CSF和G-CSF刺激骨髓间充质干细胞分化而成的fMDSCs,在表达MDSCs、DCs和纤维细胞的表型标志物的同时,后续还可以通过增加吲哚胺2,3-双加氧酶(2,3-dioxygenase, IDO)的表达诱导Treg细胞生成 [11]。

此外,肿瘤来源的炎性细胞因子(如IL-1β、IL-6、TNF-α等)可以通过促进趋化因子(主要包括CXC趋化因子家族,如CXCL-8、CCL2、CCL5、CCL11、CXCL10等)的分泌,促进未成熟的骨髓前体细胞分化成MDSCs并进一步分化为具有免疫抑制性的巨噬细胞和DCs [12] [13]。同时,肿瘤细胞来源的TGF-β可以通过TGF-β/SMADs途径调节中性粒细胞极化为促肿瘤表型的中性粒细胞 [14]。而TLR家族中的核因子-κB (nuclear factor kappa-B, NF-κB)则是通过诱导一些炎性介质如COX2和PGE2的分泌以增强MDSCs的募集,并帮助肿瘤细胞实现免疫逃避 [15]。

这些细胞因子绝大多数通过转录因子发挥作用,相关转录因子主要包括信号转导和转录激活因子1 (signal transducer and activator of transcription 1, STAT1)、STAT3、STAT5、STAT6及NF-κB等 [16] [17] [18] [19]。其中,处在主导地位的是STAT3。在转移性瘤细胞中,肿瘤来源的IL-6和IL-10可以重塑STAT3通路,继而诱导MDSCs扩增并促进巨噬细胞极化为免疫抑制亚型 [20] [21]。不仅如此,STAT3还可以通过增强一些钙结合蛋白(如S100A8和S100A9)的表达促进MDSCs扩增,并进一步增强其免疫抑制活性 [22]。此外,STAT3及其他具有氧敏感性的转录因子(如STAT1、STAT6和NF-κB)以及一些肿瘤源性炎症因子(如IFN-γ、TNF-α、IL-1、IL-4和IL-13,以及TGF-β)可以作用于NADPH氧化酶(NADPH oxidase, NOX)家族,并上调活性氧(reactive oxygen species, ROS)水平,进一步促进骨髓前体细胞向MDSCs分化,同时强化肿瘤微环境的免疫抑制活性,并促进肿瘤微血管生成,促进肿瘤生长及转移 [23] [24] [25]。

其他转录因子也可以通过多种机制影响MDSCs的扩增。STAT1在一氧化氮(nitric oxide, NO)和精氨酸酶-1 (Arginase 1, ARG1)介导的免疫抑制反应中发挥重要作用,而这一过程是MDSCs扩增的重要环节之一 [26]。STAT5可以通过上调B细胞淋巴瘤/白血病-2基因(B cell lymphoma XL, Bcl-XL)的表达和下调BCL-2相关蛋白的表达,促进MDSCs扩增,这一作用在PMN-MDSCs中尤为显著。而STAT6通路可以被IL-4和IL-13激活,并通过诱导ARG1及NOX2表达进一步调节ROS介导的氧化应激反应,从而打造出免疫抑制微环境,为MDSCs的扩增提供可能 [27]。

肿瘤细胞及其间质细胞也会以外泌体的形式释放一些亚细胞成分,包括MiRNAs、信号肽和脂质等,以此促进MDSCs的扩增。近年来,随着公众对MiRNAs的研究逐渐深入,已有众多研究证实其可以通过多种潜在机制在MDSCs的扩增中发挥重要作用 [28] [29]。例如miR-224-5p靶向SMAD4和TNF-α诱导非小细胞肺癌细胞相关 MDSCs扩增 [30]。而miR-45和miR-203a-3p可以抑制SMAD3阻断TGF-β通路,逆转促肿瘤表型PMN-MDSCs极化,解除一部分免疫抑制效应 [31]。下调miR-17-92和miR-1519c以抑制HIF-1α的表达,可一定程度上促进抗肿瘤免疫反应并减少肿瘤微血管形成,抑制肿瘤生长及转移 [32]。

3. 临床意义

有研究表明,在包括黑色素瘤、非小细胞肺癌等多种瘤种中,III、IV期患者体内PMN-MDSCs、M-MDSCs和Treg细胞的表达明显高于I、II期肿瘤患者,这进一步证实了MDSCs与肿瘤的恶性程度及转移呈正相关。MDSCs不仅可以通过重塑肿瘤微环境以帮助肿瘤细胞“逃避”免疫监视,还可以通过多种机制促进恶性肿瘤的发展和转移,弱化抗肿瘤治疗疗效并影响患者预后 [33]。因此,探索MDSCs的扩增机制对于临床实践具有特殊意义。

3.1. 靶向MDSCs以增强抗肿瘤效应

实际上,MDSCs不仅可以作为可靠的生物标志物来预测肿瘤患者预后,还可以作为全新的肿瘤治疗靶点以应用于临床实践 [34]。

作为MDSCs扩增过程中最关键的转录因子,STAT3已然成为首要研究热点。舒尼替尼是一种多靶点小分子酪氨酸激酶抑制剂,可以广泛作用于VEGFR-2、血小板衍生生长因子受体b (platelet-derived growth factor receptor b, PDGFR-b)、c-kit和干细胞因子等多个靶点,进而阻断STAT3以抑制MDSCs的扩增 [35] [36]。在前列腺癌中,天然化合物Galiellalactctone可以通过下调STAT3激活基因以抑制STAT3磷酸化进一步阻断MDSCs的扩增 [37] [38]。

与此同时,还可以通过减少MDSCs扩增过程中的细胞因子来以实现抗肿瘤效应。姜黄素是一种IL-6阻断剂,在乳腺癌中,可以通过减少IL-6的分泌有效减少MDSCs的数量 [39]。而BMP4则可抑制NF-κ活性并进一步降低G-CSF在人和小鼠乳腺癌中的表达,继而在一定程度上阻断MDSCs的扩增 [40]。有研究表明,水飞蓟素可以降低CCR2的表达,从而下调恶性黑色素瘤和乳腺癌中MDSCs的特异性归巢 [41] [42]。

3.2. MDSCs和免疫检查点抑制剂

此外,MDSCs的存在与免疫检查点抑制剂的特异性耐药性相关。有研究表明,减少肿瘤微环境中CXCR2+CD11b+Ly6GhiMDSCs和S100A9+MDSCs的数量可显著增加T细胞浸润,并增强抗–程序性死亡1(programmed death 1, PD-1)免疫治疗的抗肿瘤效果 [43] [44] [45]。这种优势也反映在抗–程序性细胞死亡配体1 (programmed cell death-Ligand 1, PD-L1)和细胞毒性T淋巴细胞相关蛋白4 (cytotoxic T-lymphocyte associated protein 4, CTLA-4)抑制剂中 [34] [46] [47]。

同时MDSCs会在TEM的多种细胞因子的刺激下进一步分化为TMA,在多重机制的参与下触发免疫抑制,影响免疫检查点抑制剂的疗效,部分或完全阻断相关环节可有效增强抗肿瘤免疫反应。有研究证实,在小鼠肿瘤模型中,阻断PI3Kγ的表达不仅能促进NF-κB的激活,同时还会阻断C/EBPβ的活化效应,对恢复CD8+T细胞的细胞毒作用具有积极意义,并与检查点抑制剂治疗具有协同作用 [48] [49]。此外,白细胞免疫球蛋白样受体B2 (eukocyte immunoglobulin-like receptor B2, LILRB2)不仅能促进PMN-MDSCs的扩增和Treg的浸润,还能使肿瘤组织中炎性表型的髓系细胞向M2型(促肿瘤型巨噬细胞)分化,抑制T细胞功能。而LILRB2阻断剂与免疫检查点抑制剂联合使用可有效增强免疫检查点抑制剂的疗效,延长非小细胞肺癌患者的无进展生存期(progression-free survival, PFS) [50]。

3.3. MDSCs和酪氨酸激酶抑制剂。

在EGFR驱动基因突变阳性的肿瘤中,酪氨酸激酶抑制剂(epidermal growth factor receptor-tyrosine kinase inhibitor, EGFR-TKIs)主要通过增加细胞毒性CD8+T细胞数量和DCs的数量、减少Foxp3+Treg的积累及阻断M2型巨噬细胞极化影响免疫微环境,导致PD-1/PD-L1的表达下调,减缓肿瘤发生发展的进程 [51] [52]。但这种抗肿瘤反应通常不会持久。随后,具有免疫抑制功能的MDSCs以及肿瘤相关因子(如IL-10和CCL-2)会随之上调,最终导致EGFR TKIs耐药 [53]。澳大利亚的一项研究发现,那些高表达FoxP3+Treg细胞和M-MDSCs的慢性髓系白血病(Chronic myeloid leukemia, CML)患者在EGFR-TKIs治疗之后往往很难获得理想的PFS [52]。

另一项研究表明,在小鼠和非小细胞肺癌患者中,CD14+S100A9+单核MDSCs来源的巨噬细胞可通过将经典NF-B途径转化为新的RELB途径,诱导miR-21和miR-181b,介导肿瘤细胞对EGFR-TKIs的耐药性。消除MDSCs可以改善EGFR-TKIs耐药,延长非小细胞肺癌患者的PFS [44] [54]。同时,MDSCs本身也可以作为预测TKIs治疗预后的有效生物标志物 [54]。

3.4. MDSCs和化疗及放疗

此外,化疗的有效性也会受到肿瘤来源的MDSCs的影响。在非小细胞肺癌和黑色素瘤中,S100A9蛋白可以驱动CD11b+CD14+MDSCs肿瘤特异性归巢,以逃避铂化合物的细胞毒性作用 [55]。在一项针对乳腺癌新辅助治疗的临床研究中,减少患者化疗前MDSCs的数量可以有效提高新辅助化疗的病理完全缓解(PCR),改善患者的预后 [56] [57]。而肿瘤来源的MDSCs和Treg细胞已被证明比其他免疫细胞更能抵抗辐射,对放疗效果具有一定影响。阻断MDSCs的扩增可以有效改善放疗抵抗,增加放疗的敏感性,同时促进放疗的免疫激活作用 [58]。

4. 总结

毫无疑问,无论是在正常生理条件下,还是在病理环境中,骨髓细胞对维持机体免疫平衡都具有重要意义。

先前大量研究已证明,TME通过多种途径影响MDSCs的分化及扩增。首先,肿瘤细胞及其基质细胞释放大量细胞因子以干扰骨髓细胞正常分化和成熟途径。这些细胞因子一方面可以加速骨髓前体细胞的成熟,另一方面,可以催生出对免疫系统有很强抑制作用的MDSCs。这些细胞因子,包括炎性因子、生长因子、趋化因子、肿瘤坏死因子等,通过不同转录因子发挥作用,这个过程主要涉及STAT1、STAT3、STAT5、STAT6及NF-κB,其中,又以STAT3最为重要。其次,肿瘤细胞及相关基质细胞通过外泌体的形式释放出一些亚细胞成分,这些成分包括一些MiRNAs、信号肽和脂质等,研究表明,这些成分在MDSCs扩增及招募、肿瘤微血管生成等过程中起到积极作用。此外,TME本身处于一种乏氧状态,在这种环境中,HIF (主要是HIF-1α)诱导MDSCs扩增并上调其表面PD-L1的表达,从而导致免疫耐受 [59]。

正如前文所述,TME通过多种途径调控MDSCs,同时,这部分肿瘤相关MDSCs又可以重塑免疫抑制TME,激活TAM和Treg细胞以帮助肿瘤细胞逃避免疫监测,从而促进恶性肿瘤的发展和转移。因此,抑制其中某个或多个环节以达到阻断甚至消除MDSCs,即可在一定程度上增强机体抗肿瘤免疫反应。事实上,这也是近年来临床免疫治疗一个热点。如舒尼替尼、Galiellalactctone、姜黄素、Silymarin等药物都已在一些癌种中被证实可以通过阻断相应通路减少MDSCs生成,进而达到抗肿瘤治疗的目的。同时,靶向MDSCs治疗还与临床上现有的抗肿瘤治疗手段具有协同作用。有研究证明,消除肿瘤微环境内抑制性CXCR2+CD11b+Ly6GhiMDSCs和S100A9+MDSCs可以显著增加T细胞活性,增强抗PD-1/PD-L1及CTLA4疗效 [43] [45] [46]。此外,在小鼠及非小细胞肺癌患者中有研究证实,消除CD14+S100A9+MDSCs可以改善TKIs耐药性,延长无进展生存。并且,有研究证实:高表达FoxP3+Treg和M-MDSC患者在接受TKIs治疗时,PFS明显缩短,因此阻断MDSCs扩增不仅可以增强TKIs治疗效果,其本身也可以用作预测TKIs治疗预后的有效生物标志物 [52] [54]。临床上传统治疗手段,如化疗及放疗也可以在消除MDSCs后得到明显的获益。

总而言之,肿瘤微环境促进MDSCs扩增的机制是一个庞大而复杂的体系网络,现有的研究或许只是冰山一角,本文对其进行的综述也只是管中窥豹,但基于其对于临床上免疫治疗、靶向治疗及放化疗均有独特价值,其详尽的作用机制亟待我们进行深入探索,并争取早日有更多研究可以应用于临床,为更多肿瘤病人带来希望的曙光。

NOTES

*通讯作者。

参考文献

[1] Talmadge, J.E. and Gabrilovich, D.I. (2013) History of Myeloid-Derived Suppressor Cells. Nature Reviews Cancer, 13, 739-752.
https://doi.org/10.1038/nrc3581
[2] Keresztes, M. and Boonstra, J. (1999) Import(ance) of Growth Factors in(to) the Nucleus. The Journal of Cell Biology, 145, 421-424.
https://doi.org/10.1083/jcb.145.3.421
[3] Zhang, H., Maric, I., DiPrima, M.J., Khan, J., Orentas, R.J., Kaplan, R.N. and Mackall, C.L. (2013) Fibrocytes Represent a Novel MDSC Subset Circulating in Patients with Metastatic Cancer. Blood, 122, 1105-1113.
https://doi.org/10.1182/blood-2012-08-449413
[4] Zoso, A., Mazza, E.M., Bicciato, S., Mandruzzato, S., Bronte, V., Serafini, P. and Inverardi, L. (2014) Human Fibrocytic Myeloid-Derived Suppressor Cells Express IDO and Promote Tolerance via Treg-Cell Expansion. European Journal of Immunology, 44, 3307-3319.
https://doi.org/10.1002/eji.201444522
[5] Ushach, I. and Zlotnik, A. (2016) Biological Role of Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF) and Macrophage Colony-Stimulating Factor (M-CSF) on Cells of the Myeloid Lineage. Journal of leukocyte biology, 100, 481-489.
https://doi.org/10.1189/jlb.3RU0316-144R
[6] Hamerman, J.A., Pottle, J., Ni, M., He, Y., Zhang, Z.Y. and Buckner, J.H. (2016) Negative Regulation of TLR Signaling in Myeloid Cells—Implications for Autoimmune Diseases. Immunological Reviews, 269, 212-227.
https://doi.org/10.1111/imr.12381
[7] Zindel, J. and Kubes, P. (2020) DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annual Review of Pathology, 15, 493-518.
https://doi.org/10.1146/annurev-pathmechdis-012419-032847
[8] Gabrilovich, D.I., Ostrand-Rosenberg, S. and Bronte, V. (2012) Coordinated Regulation of Myeloid Cells by Tumours. Nature Reviews Immunology, 12, 253-268.
https://doi.org/10.1038/nri3175
[9] Kumar, V., Patel, S., Tcyganov, E. and Gabrilovich, D.I. (2016) The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends in Immunology, 37, 208-220.
https://doi.org/10.1016/j.it.2016.01.004
[10] Veglia, F., Perego, M. and Gabrilovich, D. (2018) Myeloid-Derived Suppressor Cells Coming of Age. Nature Immunology, 19, 108-119.
https://doi.org/10.1038/s41590-017-0022-x
[11] Park, M.Y., Lim, B.G., Kim, S.Y., Sohn, H.J., Kim, S. and Kim, T.G. (2019) GM-CSF Promotes the Expansion and Differentiation of Cord Blood Myeloid-Derived Suppressor Cells, Which Attenuate Xenogeneic Graft-vs.-Host Disease. Frontiers in Immunology, 10, Article No. 183.
https://doi.org/10.3389/fimmu.2019.00183
[12] Huang, B., Lei, Z., Zhao, J., Gong, W., Liu, J., Chen, Z., Liu, Y., Li, D., Yuan, Y., Zhang, G.M. and Feng, Z.H. (2007) CCL2/CCR2 Pathway Mediates Recruitment of Myeloid Suppressor Cells to Cancers. Cancer Letters, 252, 86-92.
https://doi.org/10.1016/j.canlet.2006.12.012
[13] Shojaei, F., Wu, X., Zhong, C., Yu, L., Liang, X.H., Yao, J., Blanchard, D., Bais, C., Peale, F.V., van Bruggen, N., Ho, C., Ross, J., Tan, M., Carano, R.A., Meng, Y.G. and Ferrara, N. (2007) Bv8 Regulates Myeloid-Cell-Dependent Tumour Angiogenesis. Nature, 450, 825-831.
https://doi.org/10.1038/nature06348
[14] Fridlender, Z.G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., Worthen, G.S. and Albelda, S.M. (2009) Polarization of Tumor-Associated Neutrophil Phenotype by TGF-Beta: “N1” versus “N2” TAN. Cancer Cell, 16, 183-194.
https://doi.org/10.1016/j.ccr.2009.06.017
[15] Xu, W., Dong, J., Zheng, Y., Zhou, J., Yuan, Y., Ta, H.M., Miller, H.E., Olson, M., Rajasekaran, K., Ernstoff, M.S., Wang, D., Malarkannan, S. and Wang, L. (2019) Immune-Checkpoint Protein VISTA Regulates Antitumor Immunity by Controlling Myeloid Cell-Mediated Inflammation and Immunosuppression. Cancer Immunology Research, 7, 1497-1510.
https://doi.org/10.1158/2326-6066.CIR-18-0489
[16] Mohrherr, J., Haber, M., Breitenecker, K., Aigner, P., Moritsch, S., Voronin, V., Eferl, R., Moriggl, R., Stoiber, D., Győrffy, B., Brcic, L., László, V., Döme, B., Moldvay, J., Dezső, K., Bilban, M., Popper, H., Moll, H.P. and Casanova, E. (2019) JAK-STAT Inhibition Impairs K-RAS-Driven Lung Adenocarcinoma Progression. International Journal of Cancer, 145, 3376-3388.
https://doi.org/10.1002/ijc.32624
[17] Yu, Q., Dong, L., Li, Y. and Liu, G. (2018) SIRT1 and HIF1α Signaling in Metabolism and Immune Responses. Cancer Letters, 418, 20-26.
https://doi.org/10.1016/j.canlet.2017.12.035
[18] Trikha, P. and Carson 3rd, W.E. (2014) Signaling Pathways Involved in MDSC Regulation. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1846, 55-65.
https://doi.org/10.1016/j.bbcan.2014.04.003
[19] Derynck, R. and Zhang, Y.E. (2003) Smad-Dependent and Smad-Independent Pathways in TGF-Beta Family Signalling. Nature, 425, 577-584.
https://doi.org/10.1038/nature02006
[20] Jing, B., Wang, T., Sun, B., Xu, J., Xu, D., Liao, Y., Song, H., Guo, W., Li, K., Hu, M., Zhang, S., Ling, J., Kuang, Y., Zhang, T., Zhou, B.P., Yao, F. and Deng, J. (2020) IL6/STAT3 Signaling Orchestrates Premetastatic Niche Formation and Immunosuppressive Traits in Lung. Cancer Research, 80, 784-797.
https://doi.org/10.1158/0008-5472.CAN-19-2013
[21] Heinrich, P.C., Behrmann, I., Müller-Newen, G., Schaper, F. and Graeve, L. (1998) Interleukin-6-Type Cytokine Signalling through the gp130/Jak/STAT Pathway. The Biochemical Journal, 334, 297-314.
https://doi.org/10.1042/bj3340297
[22] Shabani, F., Farasat, A., Mahdavi, M. and Gheibi, N. (2018) Calprotectin (S100A8/S100A9): A Key Protein between Inflammation and Cancer. Inflammation Research, 67, 801-812.
https://doi.org/10.1007/s00011-018-1173-4
[23] Luo, H.M., Wu, X., Xian, X., Wang, L.Y., Zhu, L.Y., Sun, H.Y., Yang, L. and Liu, W.X. (2020) Calcitonin Gene-Related Peptide Inhibits Angiotensin II-Induced NADPH Oxidase-Dependent ROS via the Src/STAT3 Signalling Pathway. Journal of Cellular and Molecular Medicine, 24, 6426-6437.
https://doi.org/10.1111/jcmm.15288
[24] Roy, K., Wu, Y., Meitzler, J.L., Juhasz, A., Liu, H., Jiang, G., Lu, J., Antony, S. and Doroshow, J.H. (2015) NADPH Oxidases and Cancer. Clinical Science, 128, 863-875.
https://doi.org/10.1042/CS20140542
[25] Colotta, F., Allavena, P., Sica, A., Garlanda, C. and Mantovani, A. (2009) Cancer-Related Inflammation, the Seventh Hallmark of Cancer: Links to Genetic Instability. Carcinogenesis, 30, 1073-1081.
https://doi.org/10.1093/carcin/bgp127
[26] Zhang, Y. and Liu, Z. (2017) STAT1 in Cancer: Friend or Foe? Discovery Medicine, 24, 19-29.
[27] Jayakumar, A. and Bothwell, A. (2017) Stat6 Promotes Intestinal Tumorigenesis in a Mouse Model of Adenomatous Polyposis by Expansion of MDSCs and Inhibition of Cytotoxic CD8 Response. Neoplasia, 19, 595-605.
https://doi.org/10.1016/j.neo.2017.04.006
[28] Zhu, D., Tian, J., Wu, X., Li, M., Tang, X., Rui, K., Guo, H., Ma, J., Xu, H. and Wang, S. (2019) G-MDSC-Derived Exosomes Attenuate Collagen-Induced Arthritis by Impairing Th1 and Th17 Cell Responses. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1865, Article ID: 165540.
https://doi.org/10.1016/j.bbadis.2019.165540
[29] Zhang, H.G. and Grizzle, W.E. (2011) Exosomes and Cancer: A Newly Described Pathway of Immune Suppression. Clinical Cancer Research, 17, 959-964.
https://doi.org/10.1158/1078-0432.CCR-10-1489
[30] Dejima, H., Iinuma, H., Kanaoka, R., Matsutani, N. and Kawamura, M. (2017) Exosomal MicroRNA in Plasma as a Non-Invasive Biomarker for the Recurrence of Non-Small Cell Lung Cancer. Oncology Letters, 13, 1256-1263.
https://doi.org/10.3892/ol.2017.5569
[31] Hu, H., Xu, Z., Li, C., Xu, C., Lei, Z., Zhang, H.T. and Zhao, J. (2016) MiR-145 and miR-203 Represses TGF-β-Induced Epithelial-Mesenchymal Transition and Invasion by Inhibiting SMAD3 in Non-Small Cell Lung Cancer Cells. Lung Cancer, 97, 87-94.
https://doi.org/10.1016/j.lungcan.2016.04.017
[32] Hokusai-VTE Investigators, Büller, H.R., Décousus, H., Grosso, M.A., Mercuri, M., Middeldorp, S., Prins, M.H., Raskob, G.E., Schellong, S.M., Schwocho, L., Segers, A., Shi, M., Verhamme, P. and Wells, P. (2013) Edoxaban Versus Warfarin for the Treatment of Symptomatic venous Thromboembolism. The New England Journal of Medicine, 369, 1406-1415.
https://doi.org/10.1056/NEJMoa1306638
[33] Yang, J., Yan, J. and Liu, B. (2018) Targeting VEGF/VEGFR to Modulate Antitumor Immunity. Frontiers in Immunology, 9, Article No. 978.
https://doi.org/10.3389/fimmu.2018.00978
[34] Singh, M., Ramos, I., Asafu-Adjei, D., Quispe-Tintaya, W., Chandra, D., Jahangir, A., Zang, X., Aggarwal, B.B. and Gravekamp, C. (2013) Curcumin Improves the Therapeutic Efficacy of Listeria(at)-Mage-b Vaccine in Correlation with Improved T-Cell Responses in Blood of a Triple-Negative Breast Cancer Model 4T1. Cancer Medicine, 2, 571-582.
https://doi.org/10.1002/cam4.94
[35] Faivre, S., Demetri, G., Sargent, W. and Raymond, E. (2007) Molecular Basis for Sunitinib Efficacy and Future Clinical Development. Nature Reviews Drug Discovery, 6, 734-745.
https://doi.org/10.1038/nrd2380
[36] Kujawski, M., Zhang, C., Herrmann, A., Reckamp, K., Scuto, A., Jensen, M., Deng, J., Forman, S., Figlin, R. and Yu, H. (2010) Targeting STAT3 in Adoptively Transferred T Cells Promotes Their in Vivo Expansion and Antitumor Effects. Cancer Research, 70, 9599-9610.
https://doi.org/10.1158/0008-5472.CAN-10-1293
[37] Hellsten, R., Johansson, M., Dahlman, A., Dizeyi, N., Sterner, O. and Bjartell, A. (2008) Galiellalactone Is a Novel Therapeutic Candidate against Hormone-Refractory Prostate Cancer Expressing Activated Stat3. The Prostate, 68, 269-280.
https://doi.org/10.1002/pros.20699
[38] Don-Doncow, N., Escobar, Z., Johansson, M., Kjellström, S., Garcia, V., Munoz, E., Sterner, O., Bjartell, A. and Hellsten, R. (2014) Galiellalactone Is a Direct Inhibitor of the Transcription Factor STAT3 in Prostate Cancer Cells. The Journal of Biological Chemistry, 289, 15969-15978.
https://doi.org/10.1074/jbc.M114.564252
[39] Meyer, C., Cagnon, L., Costa-Nunes, C.M., Baumgaertner, P., Montandon, N., Leyvraz, L., Michielin, O., Romano, E. and Speiser, D.E. (2014) Frequencies of Circulating MDSC Correlate with Clinical Outcome of Melanoma Patients Treated with Ipilimumab. Cancer Immunology, Immunotherapy, 63, 247-257.
https://doi.org/10.1007/s00262-013-1508-5
[40] Cao, Y., Slaney, C.Y., Bidwell, B.N., Parker, B.S., Johnstone, C.N., Rautela, J., Eckhardt, B.L. and Anderson, R.L. (2014) BMP4 Inhibits Breast Cancer Metastasis by Blocking Myeloid-Derived Suppressor Cell Activity. Cancer Research, 74, 5091-5102.
https://doi.org/10.1158/0008-5472.CAN-13-3171
[41] Makhmalzadeh, B.S., Molavi, O., Vakili, M.R., Zhang, H.F., Solimani, A., Abyaneh, H.S., Loebenberg, R., Lai, R. and Lavasanifar, A. (2018) Functionalized Caprolactone-Polyethylene Glycol Based Thermo-Responsive Hydrogels of Silibinin for the Treatment of Malignant Melanoma. Journal of Pharmacy & Pharmaceutical Sciences, 21, 143-159.
https://doi.org/10.18433/jpps29726
[42] Forghani, P., Khorramizadeh, M.R. and Waller, E.K. (2014) Silibinin Inhibits Accumulation of Myeloid-Derived Suppressor Cells and Tumor Growth of Murine Breast Cancer. Cancer Medicine, 3, 215-224.
https://doi.org/10.1002/cam4.186
[43] Highfill, S.L. Cui, Y., Giles, A.J., Smith, J.P., Zhang, H., Morse, E., et al. (2014) Disruption of CXCR2-Mediated MDSC Tumor Trafficking Enhances Anti-PD1 Efficacy. Science Translational Medicine, 6, Article No. 237ra67.
https://doi.org/10.1126/scitranslmed.3007974
[44] Alkhateeb, T., Kumbhare, A., Bah, I., Youssef, D., Yao, Z.Q., McCall, C.E. and El Gazzar, M. (2019) S100A9 Maintains Myeloid-Derived Suppressor Cells in Chronic Sepsis by Inducing MiR-21 and MiR-181b. Molecular Immunology, 112, 72-81.
https://doi.org/10.1016/j.molimm.2019.04.019
[45] Cheng, P., Eksioglu, E.A., Chen, X., Kandell, W., Le Trinh, T., Cen, L., Qi, J., Sallman, D.A., Zhang, Y., Tu, N., Adams, W.A., Zhang, C., Liu, J., Cleveland, J.L., List, A.F. and Wei, S. (2019) S100A9-Induced Overexpression of PD-1/PD-L1 Contributes to Ineffective Hematopoiesis in Myelodysplastic Syndromes. Leukemia, 33, 2034-2046.
https://doi.org/10.1038/s41375-019-0397-9
[46] Noman, M.Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., Bronte, V. and Chouaib, S. (2014) PD-L1 Is a Novel Direct Target of HIF-1α, and Its Blockade under Hypoxia Enhanced MDSC-Mediated T Cell Activation. The Journal of Experimental Medicine, 211, 781-790.
https://doi.org/10.1084/jem.20131916
[47] Weber, J., Gibney, G., Kudchadkar, R., Yu, B., Cheng, P., Martinez, A.J., Kroeger, J., Richards, A., McCormick, L., Moberg, V., Cronin, H., Zhao, X., Schell, M. and Chen, Y.A. (2016) Phase I/II Study of Metastatic Melanoma Patients Treated with Nivolumab Who Had Progressed after Ipilimumab. Cancer Immunology Research, 4, 345-353.
https://doi.org/10.1158/2326-6066.CIR-15-0193
[48] Kaneda, M.M., Messer, K.S., Ralainirina, N., Li, H., Leem, C.J., Gorjestani, S., Woo, G., Nguyen, A.V., Figueiredo, C.C., Foubert, P., Schmid, M.C., Pink, M., Winkler, D.G., Rausch, M., Palombella, V.J., Kutok, J., McGovern, K., Frazer, K.A., Wu, X., Karin, M., et al. (2016) PI3Kγ Is a Molecular Switch That Controls Immune Suppression. Nature, 539, 437-442.
https://doi.org/10.1038/nature19834
[49] De Henau, O., Rausch, M., Winkler, D., Campesato, L.F., Liu, C., Cymerman, D.H., Budhu, S., Ghosh, A., Pink, M., Tchaicha, J., Douglas, M., Tibbitts, T., Sharma, S., Proctor, J., Kosmider, N., White, K., Stern, H., Soglia, J., Adams, J., Palombella, V.J., et al. (2016) Overcoming Resistance to Checkpoint Blockade Therapy by Targeting PI3Kγ in Myeloid Cells. Nature, 539, 443-447.
https://doi.org/10.1038/nature20554
[50] Chen, H.M., van der Touw, W., Wang, Y.S., Kang, K., Mai, S., Zhang, J., Alsina-Beauchamp, D., Duty, J.A., Mungamuri, S.K., Zhang, B., Moran, T., Flavell, R., Aaronson, S., Hu, H.M., Arase, H., Ramanathan, S., Flores, R., Pan, P.Y. and Chen, S.H. (2018) Blocking Immunoinhibitory Receptor LILRB2 Reprograms Tumor-Associated Myeloid Cells and Promotes Antitumor Immunity. The Journal of Clinical Investigation, 128, 5647-5662.
https://doi.org/10.1172/JCI97570
[51] Orillion, A., Hashimoto, A., Damayanti, N., Shen, L., Adelaiye-Ogala, R., Arisa, S., Chintala, S., Ordentlich, P., Kao, C., Elzey, B., Gabrilovich, D. and Pili, R. (2017) Entinostat Neutralizes Myeloid-Derived Suppressor Cells and Enhances the Antitumor Effect of PD-1 Inhibition in Murine Models of Lung and Renal Cell Carcinoma. Clinical Cancer Research, 23, 5187-5201.
https://doi.org/10.1158/1078-0432.CCR-17-0741
[52] Irani, Y.D., Hughes, A., Clarson, J., Kok, C.H., Shanmuganathan, N., White, D.L., Yeung, D.T., Ross, D.M., Hughes, T.P. and Yong, A. (2020) Successful Treatment-Free Remission in Chronic Myeloid Leukaemia and Its Association with Reduced Immune Suppressors and Increased Natural Killer Cells. British Journal of Haematology, 191, 433-441.
https://doi.org/10.1111/bjh.16718
[53] Jia, Y., Li, X., Jiang, T., Zhao, S., Zhao, C., Zhang, L., Liu, X., Shi, J., Qiao, M., Luo, J., Liu, S., Han, R., Su, C., Ren, S. and Zhou, C. (2019) EGFR-Targeted Therapy Alters the Tumor Microenvironment in EGFR-Driven Lung Tumors: Implications for Combination Therapies. International Journal of Cancer, 145, 1432-1444.
https://doi.org/10.1002/ijc.32191
[54] Feng, P.H., Yu, C.T., Chen, K.Y., Luo, C.S., Wu, S.M., Liu, C.Y., Kuo, L.W., Chan, Y.F., Chen, T.T., Chang, C.C., Lee, C.N., Chuang, H.C., Lin, C.F., Han, C.L., Lee, W.H. and Lee, K.Y. (2018) S100A9+ MDSC and TAM-Mediated EGFR-TKI Resistance in Lung Adenocarcinoma: The Role of RELB. Oncotarget, 9, 7631-7643.
https://doi.org/10.18632/oncotarget.24146
[55] Feng, P.H., Lee, K.Y., Chang, Y.L., Chan, Y.F., Kuo, L.W., Lin, T.Y., Chung, F.T., Kuo, C.S., Yu, C.T., Lin, S.M., Wang, C.H., Chou, C.L., Huang, C.D. and Kuo, H.P. (2012) CD14+S100A9+ Monocytic Myeloid-Derived Suppressor Cells and Their Clinical Relevance in Non-Small Cell Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 186, 1025-1036.
https://doi.org/10.1164/rccm.201204-0636OC
[56] Yu, J., Wang, Y., Yan, F., Zhang, P., Li, H., Zhao, H., Yan, C., Yan, F. and Ren, X. (2014) Noncanonical NF-κB Activation Mediates STAT3-Stimulated IDO Upregulation in Myeloid-Derived Suppressor Cells in Breast Cancer. Journal of Immunology, 193, 2574-2586.
https://doi.org/10.4049/jimmunol.1400833
[57] Li, F., Zhao, Y., Wei, L., Li, S. and Liu, J. (2018) Tumor-Infiltrating Treg, MDSC, and IDO Expression Associated with Outcomes of Neoadjuvant Chemotherapy of Breast Cancer. Cancer Biology & Therapy, 19, 695-705.
https://doi.org/10.1080/15384047.2018.1450116
[58] Carvalho, H.A. and Villar, R.C. (2018) Radiotherapy and Immune Response: The Systemic Effects of a Local Treatment. Clinics, 73, Article No. e557s.
https://doi.org/10.6061/clinics/2018/e557s
[59] Terry, S., Buart, S. and Chouaib, S. (2017) Hypoxic Stress-Induced Tumor and Immune Plasticity, Suppression, and Impact on Tumor Heterogeneity. Frontiers in Immunology, 8, Article No. 1625.
https://doi.org/10.3389/fimmu.2017.01625