GCLC、GCLM在肿瘤中的作用研究进展概述
Review on the Research Progress of GCLC and GCLM in Tumors
DOI: 10.12677/WJCR.2022.121001, PDF, HTML, XML,  被引量 下载: 561  浏览: 1,604  国家自然科学基金支持
作者: 达德转, 潘志昂, 党春艳, 李红玲*:甘肃中医药大学第一临床医学院(甘肃省人民医院),甘肃 兰州
关键词: 谷氨酸半胱氨酸连接酶谷氨酸半胱氨酸催化亚基谷氨酸半胱氨酸修饰亚基氧化应激肿瘤GCL GCLC GCLM ROS Tumors
摘要: 我国肿瘤发病率与死亡率居高,以乳腺癌、肺癌为代表的恶性肿瘤的诊治面临巨大挑战。氧化应激是指由于活性物质的产生或氧化还原系统代偿能力有限使得细胞内氧化还原状态被破坏的一种病理过程。研究表明氧化应激与肿瘤中氧化应激水平多处于失衡状态并与恶性肿瘤发生发展密切相关。谷胱甘肽(glutathione, GSH)在肺癌、结直肠癌等多种肿瘤中异常表达且与氧化应激失衡相关。另外参与合成GSH的关键酶谷氨酸半胱氨酸连接酶(glutamate cysteine ligase, GCL)及其亚基也受到很大关注,他们可能是造成恶性肿瘤中GSH合成紊乱及氧化应激失衡的重要原因,并在不同肿瘤中发挥促癌或抑癌的作用。但是GCL及其亚基与肿瘤发生发展的关系、与患者临床病理特征的关系尚未系统阐述,该文就GCL及其亚基在肿瘤中的表达及其意义进行综述。
Abstract: The incidence and mortality of cancer are high in China, but the diagnosis and treatment of malignant tumors represented by breast cancer and lung cancer are facing great challenges. Oxidative stress refers to a pathological process in which the redox state in cells is destroyed due to the production of active substances or the limited compensatory capacity of REDOX system. Studies have shown that oxidative stress is often unbalanced with the level of oxidative stress in tumors and is closely related to the occurrence and development of malignant tumors. Glutathione (GSH) is abnormally expressed in lung cancer, colorectal cancer and other tumors and is associated with oxidative stress imbalance. In addition, glutamate cysteine ligase (GCL) and its subunits, a key enzyme involved in the synthesis of GSH, have also attracted great attention, which may be an important cause of GSH synthesis disorder and oxidative stress imbalance in malignant tumors, and play a role in promoting or inhibiting cancer in different tumors. However, the relationship between GCL and its subunits and tumor development and clinicopathological features of patients has not been systematically described. Therefore, this paper reviews the expression and significance of GCL and its subunits in tumors.
文章引用:达德转, 潘志昂, 党春艳, 李红玲. GCLC、GCLM在肿瘤中的作用研究进展概述[J]. 世界肿瘤研究, 2022, 12(1): 1-6. https://doi.org/10.12677/WJCR.2022.121001

1. 肿瘤概述

2018年国际癌症研究机构报道,恶性肿瘤仍是影响各国居民健康的重要因素。癌症每年发病率约18.1百万人,死亡率为9.6百万人,肺癌,乳腺癌等恶性肿瘤发病率和死亡率上升 [1]。我国是癌症大国,癌症发病率和死亡率在不同地区各不相同,但是城市和农村地区主要恶性肿瘤为肺癌和肝癌 [2]。随着手术、放化疗及分子靶向治疗的进步,肿瘤患者生存率得到很大提升,但是由于大多数患者发现肿瘤时已到中晚期,此外我国癌症防控形势严峻并严重影响居民健康,因此肿瘤的诊断及治疗急需得到提升,本文就GCLC和GCLM在不同肿瘤中的表达及其临床意义进行阐述。

2. 氧化应激

不论是生物个体还是细胞无时无刻都暴露在各种潜在刺激之下,细胞为了存活,必须通过激活一系列复杂的防御机制来应对这些外来刺激,氧化还原是细胞调节内稳态和存活的重要方式。氧化还原稳态指细胞不断地处理细胞内活性氧、活性氮等活性物质的过程,其对维持细胞正常功能是至关重要的。机体内氧化状态分别是由有氧代谢、水相或脂相氧化分子来维持,而还原状态是由Nrf2和亲电子体等物质维持。细胞通过解除氧化还原酶的抑制或过表达抗氧化物等方式来清除由代谢产生的各种有害物质,使其移向正常生理范围。然而,在人体很多疾病中,氧化还原相关物质并不处于平衡状态。氧化应激即为由于活性物质的产生或氧化还原系统代偿能力有限使得细胞内氧化还原状态被破坏的一种病理过程。现有研究发现氧化还原失衡与肿瘤发生发展相关。维持或重建氧化还原平衡可能是预防或治愈疾病的一种方法。

活性氧的定义是具有反应特性的含氧化学物,包括超氧化物(O2-)、羟自由基(HO)、过氧化氢(H2O2),这些分子主要来源于发生在如线粒体的各种代谢反应,活性氧不同水平能够诱导不同生物过程,ROS作为信号分子维持细胞增殖和分化,并激活相应的应激应答生存途径,比如H2O2可以作为增殖、分化和迁移的信号,因此ROS水平对细胞内稳态显得十分重要了 [3]。然而过量的ROS活性氧能够损伤细胞DNA、蛋白质、脂质体等通过诱导DNA突变导致癌症发生。

3. 谷胱甘肽在肿瘤中异常表达

GSH是一种细胞内普遍存在的三肽化合物,其作用为保护细胞免受自由基等毒性物质的损伤,维持细胞内氧化还原状态。高水平的活性氧(reactive oxygen species, ROS)或受损的抗氧化防御系统可能在癌症的形成和进展中发挥重要作用。GSH合成过程包括在GCL催化作用下由谷氨酸和半胱氨酸生成γ-谷氨酰半胱氨酸,GCL是重要的限速酶。其次在谷胱甘肽合成酶(glutathione synthetase, GSS)作用下由γ-谷氨酰半胱氨酸和甘氨酸生成GSH,GSH以硫醇还原和二硫化氧化(GSSG)形式存在。GSH有两个重要基团硫醇(-SH)和γ-glu使得GSH有很强的还原性,GSH通过这两个基团发挥解毒、抗氧化、调节细胞增殖、凋亡、免疫等多种生物作用。谷胱甘肽通过与药物结合或与药物发生反应,与活性氧相互作用,减缓蛋白质或DNA损伤是引起肿瘤耐药的原因,在卵巢癌、肺癌、前列腺癌、结直肠癌等肿瘤中有相关研究,并与肿瘤发生发展密切相关 [3] [4]。

在癌前病变阶段,抗氧化物系统活性降低同时ROS通过诱导氧化损伤或基因突变促进肿瘤形成。反之,在肿瘤晚期阶段,肿瘤细胞产生大量的活性氧消除多余的ROS从而逃避凋亡 [5]。GSH参与了细胞身份转变、放化疗耐药 [6]。GSH在肿瘤组织中异常表达,比如在乳腺癌 [7]、头颈部癌 [8]、结肠癌 [9]、非小细胞肺癌 [10] 和白血病 [11] 中高表达,其与肿瘤增殖、周期、侵袭性、预后及耐药相关。综上所述,GCL及其亚基作为GSH合成关键酶,与肿瘤中GSH异常表达密切相关,因此我们对GCLC和GCLM在肿瘤中的研究进行综述。

4. GCL结构及其作用概述

GCL是由不同基因编辑的重链谷氨酸半胱氨酸连接酶(glutamate-cysteine ligase catalytic, GCLC),修饰亚基谷氨酸半胱氨酸连接酶(glutamatecysteine ligase, modifier subunit, GCLM)组成。GCL是细胞内GSH生物合成过程中的限速酶,肿瘤细胞中抗氧化酶GSH水平可能与GCL限速酶异常表达或活性变化相关。GCLC发挥所有的催化作用,并且受到GSH的反馈抑制 [12]。GCLM不具有酶活性,但通过降低GCL对谷氨酸的Km值和提高GSH的Ki值来调节GCLC对谷氨酸亲和性从而调控细胞内GSH浓度。分离出重链亚基GCLC对谷氨酸亲和力很低并对GSH反馈抑制敏感,因此全酶的活性更高效 [13] [14]。细胞的氧化还原状态能够影响GCL的活性从而调控GSH形成 [15]。GCL活性的变化可能是GCLC或GCLC和GCLM均受多个水平调控的结果,因此有必要探讨GCLC和GCLM在肿瘤中的表达及其临床价值。

5. GCLC在肿瘤中异常表达

国内外研究表明GCLC在多种肿瘤中高表达,意味着GCLC可能与肿瘤发生发展相关有可能成为新的诊治靶点。Xuejiao Jia [5] 在肝细胞系WRL68中证明GCLC下调促进了DNA损伤、肿瘤增殖、侵袭和转移,表明GCLC表达与肝癌发生发展密切相关。Jialei Sun [16] 通过对肝癌组织和癌旁组织分析发现GCLC在肝癌组织中的表达水平升高,且GCLC的表达与肝癌患者肿瘤分化、血管浸润、BCLC分期、总生存期和无病生存期相关。Kim AD 通过对比Caco-2、SNU-407等结肠癌细胞系和结肠正常细胞系FHC发现结肠癌细胞系中GCLC明显高于正常细胞系,在结肠癌组织与癌旁组织比较也得出相同结论,GCLC有可能成为结肠癌的分子标志物或药物靶点 [17]。Eun [18] 通过免疫组化发现在纤维组织细胞瘤、横纹肌肉瘤、骨肉瘤等108例肉瘤组织中GCLC显著上调(P < 0.05)。Dimitrios [19] 发现GCLC在黑色素瘤中高表达与黑色素瘤良好预后和低氧化水平相关。在乳腺癌、室管膜瘤中GCLC表达水平显著上调也与患者良好预后相关 [20] [21]。综上所述,GCLC与肿瘤分化、分期、侵袭性、转移、预后相关,这揭示了氧化应激在肿瘤中的复杂作用。

6. GCLM在肿瘤中异常表达

GCLM是GCLC修饰亚基,其通过调节GCLC与谷氨酸亲和性从而有效控制GSH在细胞内的浓度。在GCLC阴性的小鼠中,GSH浓度只占野生型小鼠的10%~20%,与野生型小鼠相比,GCLM阴性小鼠表现出更广泛的肝损伤,说明GCLM在GSH合成过程中具有重要的调节作用 [22]。Isaac发现PyMT-Gclm-/-小鼠肿瘤发生的时间推迟,生存期更长,侵袭和浸润性都降低,肿瘤体积也相对野生型小鼠变小,并通过QPCR对结肠癌、食管癌、肺癌、胰腺癌、前列腺癌组织GCLM mRNA检测发现肿瘤GCLM表达水平明显高于正常组织,且GCLC表达水平与患者无瘤生存期和总生存期成负相关,结果说明GCLM催化亚基促进肿瘤发生,且和患者预后密切相关 [23] [24]。文献报道GCLM在多种肿瘤耐药中异常发挥作用,比如肺癌 [25]、乳腺癌 [26]、肝癌 [27]、卵巢癌 [28]、成神经管纤维瘤 [29] 中表达上调多与肿瘤耐药相关。

7. GCLC和GCLM同时在肿瘤中异常表达

GCLC、GCLM二者有时候是协同变化的,Monong Li通过蛋白水平实验Western blotting、酶活性检测方法对比46例肾透明细胞癌组织与癌旁组织发现二者表达水平同时上调,且GCL活性与肾癌TNM分期呈正相关 [30]。与之相反的,Monong Li [31] 通过QPCR、Western blotting实验对46例尿路上皮癌组织与39例癌旁组织在mRNA和蛋白水平上对GCLC、GCLM进行表达水平检测,运用酶的活性实验方法测定酶活性,发现GCLC、GCLM同时在膀胱癌中表达水平降低且GCL活性明显升高,可能因为GCL含量减少从而提高酶活性来调节细胞氧化平衡状态。Ming-Liang Cheng [32] 通过免疫组织化学染色法和RT-PCR比较肝癌组织与癌旁组织同样发现GCLC、GCLM同时下调。Mabel M在人颗粒细胞瘤COV434中证明GCLC、GCLM的上调能够促进GSH合成,起改善氧化应激和辐射引起的各种不良反应作用 [33]。综上所述,GCLC和GCLM在肿瘤中通常是异常表达的,有可能为胃癌诊治提供靶标。

8. 结论与展望

综上所述,GCLC、GCLM在不同肿瘤中的表达水平是复杂多变的。通过分析GCLC和GCLM与肿瘤临床病理特征相关性,我们发现其与肿瘤发生、发展、大小、分期、预后相关并有可能为肿瘤诊治提供新的理论依据。

致谢

首先感谢国家自然基金委员会对这篇文章的支持与帮助(No.81760537, 81560498),其次感谢甘肃省科学技术厅及甘肃省人民医院对该文章的资金支持与帮助(No. 20YF8WA096, No.19SYPYA-3)。

NOTES

*通讯作者。

参考文献

[1] Bray, F., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[2] 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1): 10.
[3] Moloney, J.N. and Cotter, T.G. (2018) ROS Signalling in the Biology of Cancer. Seminars in Cell and Developmental Biology, 80, 50-64.
https://doi.org/10.1016/j.semcdb.2017.05.023
[4] Lu, S.C. (2009) Regulation of Glutathione Synthesis. Molecular Aspects of Medicine, 30, 42-59.
https://doi.org/10.1016/j.mam.2008.05.005
[5] Kearns, P.R., Pieters, R., Rottier, M.M.A., et al. (2001) Raised Blast Glutathione Levels Are Associated with an Increased Risk of Relapse in Childhood Acute Lymphocytic Leukemia. Blood: The Journal of the American Society of Hematology, 97, 393-398.
https://doi.org/10.1182/blood.V97.2.393
[6] Ankita, B., et al. (2018) Glutathione Metabolism in Cancer Progression and Treatment Resistance. Journal of Cell Biology, 217, 2291-2298.
https://doi.org/10.1083/jcb.201804161
[7] Assi, M. (2017) The Differential Role of Reactive Oxygen Species in Early and Late Stages of Cancer. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 313, R646-R653.
https://doi.org/10.1152/ajpregu.00247.2017
[8] Singh, S., Khan, A.R. and Gupta, A.K. (2012) Role of Glutathione in Cancer Pathophysiology and Therapeutic Interventions. Journal of Experimental Therapeutics and Oncology, 9, 303-316.
[9] Yeh, C.C., Hou, M.F., Wu, S.H., et al. (2010) A Study of Glutathione Status in the Blood and Tissues of Patients with Breast Cancer. Cell Biochemistry & Function, 24, 555-559.
https://doi.org/10.1002/cbf.1275
[10] Almadori, G., Bussu, F., Galli, J., et al. (2010) Salivary Glutathione and Uric Acid Levels in Patients with Head and Neck Squamous Cell Carcinoma. Head & Neck, 29, 648-654.
https://doi.org/10.1002/hed.20579
[11] Grubben, M., van Den Braak, C.C.M., Nagengast, F.M., et al. (2006) Low Colonic Glutathione Detoxification Capacity in Patients at Risk for Colon Cancer. European Journal of Clinical Investigation, 36, 188-192.
https://doi.org/10.1111/j.1365-2362.2006.01618.x
[12] Huang, C.S., Chang, L.S. anderson, M.E., et al. (1993) Catalytic and Regulatory Properties of the Heavy Subunit of Rat Kidney Gamma-Glutamylcysteine Synthetase. Journal of Biological Chemistry, 268, 19675-19680.
https://doi.org/10.1016/S0021-9258(19)36569-X
[13] Huang, C.S. anderson, M.E. and Meister, A. (1993) Amino Acid Sequence and Function of the Light Subunit of Rat Kidney Gamma-Glutamylcysteine Synthetase. Journal of Biological Chemistry, 268, 20578-20583.
https://doi.org/10.1016/S0021-9258(20)80764-9
[14] Franklin, C.C., Backos, D.S., Mohar, I., et al. (2009) Structure, Function, and Post-Translational Regulation of the Catalytic and Modifier Subunits of Glutamate Cysteine Ligase. Molecular Aspects of Medicine, 30, 86-98.
https://doi.org/10.1016/j.mam.2008.08.009
[15] Gupta, A., Srivastava, S., Prasad, R., et al. (2010) Oxidative Stress in Non-Small Cell Lung Cancer Patients after Chemotherapy: Association with Treatment Response. Respirology, 15, 349-356.
https://doi.org/10.1111/j.1440-1843.2009.01703.x
[16] Jia, X., Guan, B., Liao, J., et al. (2019) Down-Regulation of GCLC Is Involved in Microcystin-LR-Induced Malignant Transformation of Human Liver Cells. Toxicology, 421, 49-58.
https://doi.org/10.1016/j.tox.2019.03.010
[17] Sun, J., Zhou, C., Ma, Q., et al. (2019) High GCLC Level in Tumor Tissues Is Associated with Poor Prognosis of Hepatocellular Carcinoma after Curative Resection. Journal of Cancer, 10, 3333.
https://doi.org/10.7150/jca.29769
[18] Kim, A.D., Zhang, R., Han, X., et al. (2015) Involvement of Glutathione and Glutathione Metabolizing Enzymes in Human Colorectal Cancer Cell Lines and Tissues. Molecular Medicine Reports, 12, 4314-4319.
https://doi.org/10.3892/mmr.2015.3902
[19] Mi Je, E.M., An, C.H., Yoo, N.J., et al. (2012) Mutational and Expressional Analyses of NRF2 and KEAP1 in Sarcomas. Tumori Journal, 98, 510-515.
https://doi.org/10.1177/030089161209800417
[20] Mougiakakos, D., Okita, R. ando, T., et al. (2012) High Expression of GCLC Is Associated with Malignant Melanoma of Low Oxidative Phenotype and Predicts a Better Prognosis. Journal of Molecular Medicine, 90, 935-944.
https://doi.org/10.1007/s00109-012-0857-4
[21] Järvelä, S., Nordfors, K., Jansson, M., et al. (2008) Decreased Expression of Antioxidant Enzymes Is Associated with Aggressive Features in Ependymomas. Journal of Neuro-Oncology, 90, 283-291.
https://doi.org/10.1007/s11060-008-9658-6
[22] Soini, Y., Karihtala, P., Mäntyniemi, A., et al. (2004) Glutamate-L-Cysteine Ligase in Breast Carcinomas. Histopathology, 44, 129-135.
https://doi.org/10.1111/j.1365-2559.2004.01768.x
[23] McConnachie, L.A., Mohar, I., Hudson, F.N., et al. (2007) Glutamate Cysteine Ligase Modifier Subunit Deficiency and Gender as Determinants of Acetaminophen-Induced Hepatotoxicity in Mice. Toxicological Sciences, 99, 628-636.
https://doi.org/10.1093/toxsci/kfm165
[24] Harris, I.S., Treloar, A.E., Inoue, S., et al. (2015) Glutathione and Thioredoxin Antioxidant Pathways Synergize to Drive Cancer Initiation and Progression. Cancer Cell, 27, 211-222.
https://doi.org/10.1016/j.ccell.2014.11.019
[25] Inoue, Y., Tomisawa, M., Yamazaki, H., et al. (2003) The Modifier Subunit of Glutamate Cysteine Ligase (GCLM) Is a Molecular Target for Amelioration of Cisplatin Resistance in Lung Cancer. International Journal of Oncology, 23, 1333-1339.
https://doi.org/10.3892/ijo.23.5.1333
[26] Syu, J.P., Chi, J.T. and Kung, H.N. (2016) Nrf2 Is the Key to Chemotherapy Resistance in MCF7 Breast Cancer Cells under Hypoxia. Oncotarget, 7, 14659-14672.
https://doi.org/10.18632/oncotarget.7406
[27] Albrethsen, J., et al. (2011) Gel-Based Proteomics of Liver Cancer Progression in Rat. Biochimica et Biophysica Acta, 1814, 1367-1376.
https://doi.org/10.1016/j.bbapap.2011.05.018
[28] Zheng, Z.G., Xu, H., Suo, S.S., et al. (2016) The Essential Role of H19 Contributing to Cisplatin Resistance by Regulating Glutathione Metabolism in High-Grade Serous Ovarian Cancer. Scientific Reports, 6, Article No. 26093.
https://doi.org/10.1038/srep26093
[29] Koto, K.S., Lescault, P., Brard, L., et al. (2011) Antitumor Activity of Nifurtimox Is Enhanced with Tetrathiomolybdate in Medulloblastoma. International Journal of Oncology, 38, 1329-1341.
https://doi.org/10.3892/ijo.2011.971
[30] Li, M., Zhang, Z., Yuan, J., et al. (2014) Altered Glutamate Cysteine Ligase Expression and Activity in Renal Cell Carcinoma. Biomedical Reports, 2, 831-834.
https://doi.org/10.3892/br.2014.359
[31] 李墨农. 谷氨酰半胱氨酸连接酶在膀胱癌中表达的研究[D]: [博士学位论文]. 济南: 山东大学, 2014.
[32] Cheng, M.L., Lu, Y.F., Chen, H., et al. (2015) Liver Expression of Nrf2-Related Genes in Different Liver Diseases. Hepatobiliary & Pancreatic Diseases International, 14, 485-491.
https://doi.org/10.1016/S1499-3872(15)60425-8
[33] Cortes-Wanstreet, M.M., et al. (2009) Overexpression of Glutamate-Cysteine Ligase Protects Human COV434 Granulosa Tumour Cells against Oxidative and Gamma-Radiation-Induced Cell Death. Mutagenesis, 24, 211-224.
https://doi.org/10.1093/mutage/gen073