三级淋巴结构与肿瘤相关巨噬细胞在肝癌中的研究进展
Research Progress of Tertiary Lymphoid Structure and Tumor-Associated Macrophages in Hepatocellular Carcinoma
DOI: 10.12677/ACM.2022.122157, PDF, HTML, XML, 下载: 340  浏览: 774  国家自然科学基金支持
作者: 雷鑫焌, 张天辰, 李建辉, 聂 耶, 王彦芳, 毛珍珍:西安医学院,陕西 西安;空军军医大学第一附属医院肝胆外科,陕西 西安;宋文杰:空军军医大学第一附属医院肝胆外科,陕西 西安
关键词: 肝细胞肝癌三级淋巴结构肿瘤微环境肿瘤相关巨噬细胞Hepatocellular Carcinoma Tertiary Lymphoid Structure Tumor Microenvironment Tumor-Associated Macrophages
摘要: 三级淋巴结构(TLS)是位于非典型淋巴器官部位的异位淋巴组织,以应对慢性和进行性炎症过程,如感染、移植物排斥反应、自身免疫性疾病和癌症等。在炎症驱动型癌症肝细胞肝癌(HCC)中发现了成熟程度不同的TLS。其由各种类型的免疫细胞组成,包括树突状细胞和抗原特异性B淋巴细胞和T淋巴细胞,以及巨噬细胞等,它们共同驱动针对肿瘤发展和进展的免疫反应。本篇综述旨在总结迄今为止TLS在HCC预后方面的矛盾的研究现状,试分析这种差异性结果出现的原因,以及肿瘤相关巨噬细胞(TAMs)在其中扮演的角色,为进一步的研究提供新的视角。
Abstract: Tertiary lymphoid structure (TLS) is the ectopic lymphoid tissue located in atypical lymphoid organs to deal with chronic and progressive inflammatory processes such as infection, graft rejection, autoimmune diseases and cancer. TLS with varying degrees of maturity has been found in inflammation-driven cancer hepatocellular carcinoma (HCC). It is composed of various types of immune cells, including dendritic cells and antigen-specific B lymphocytes and T lymphocytes, as well as macrophages, etc., which together drive the immune response against tumor development and progression. This review aims to summarize the contradictory research status of TLS in the prognosis of HCC so far, and tries to analyze the reasons for the emergence of such differential results, and the role of tumor-associated macrophages (TAMs) in it, so as to provide a new perspective for further research.
文章引用:雷鑫焌, 张天辰, 李建辉, 聂耶, 王彦芳, 毛珍珍, 宋文杰. 三级淋巴结构与肿瘤相关巨噬细胞在肝癌中的研究进展[J]. 临床医学进展, 2022, 12(2): 1067-1073. https://doi.org/10.12677/ACM.2022.122157

1. 引言

在世界各国,癌症是导致死亡的主要原因,也是提高预期寿命的重要障碍。其中肝癌的全球发病率和死亡率分别位居癌症的第6位和第3位 [1]。肝细胞肝癌(hepatocellular carcinoma,HCC)是最常见的原发性肝癌,占肝癌总数的75%~85% [2]。其是一种由不同病因引起的炎症相关性癌症,如肝炎病毒、非酒精性脂肪性肝炎和酒精等 [2] [3]。肿瘤微环境(Tumor microenvironment,TME)由基质细胞、内皮细胞、免疫细胞、炎症细胞、细胞因子和细胞外基质组成,在HCC的发生和发展中起着关键作用,促进HCC细胞获得异常表型并招募免疫细胞(巨噬细胞、T细胞等) [4] [5]。然而,对TME的进一步研究揭示了抗肿瘤防御的产生和调控不仅发生在次级淋巴器官(Secondary lymphoid organs, SLOs)中,还发生在与SLOs类似的有组织细胞聚集物的肿瘤部位,即三级淋巴结构(Tertiary lymphoid structure, TLS)中 [6]。HCC的肿瘤微环境中肿瘤相关巨噬细胞(Tumor-associated macrophages, TAMs)的研究已经比较深入,主要参与肿瘤的进展和转移 [7],但关于HCC中TAMs与TLS的相互作用及在HCC发生发展中的关系研究较少,本篇综述旨在结合迄今为止TLS在HCC预后方面的矛盾的研究现状对此进行一定的梳理,以期为后续的研究带来不同角度的思考。

2. TLS

2.1. 概述TLS

三级淋巴结构(TLS)是异位细胞聚集体,其组成和组织结构类似于次级淋巴器官(SLO)。但与次级淋巴器官不同的是,TLS不是形成于胚胎发育期间,而是在非淋巴组织中响应局部炎症而形成 [8]。TLS的存在依赖于炎症刺激,当炎症消退时消失 [9] [10]。然而,炎症刺激的存在并不一定驱动TLSs的形成,因此,它们可以被认为是可诱导的,但不是程序化的。TLS构成免疫功能位点,存在于不同的组织中,具有不同的组织化程度。它们的形成过程被称为淋巴新生。在传染病、自身免疫性和炎性疾病、移植排斥、实体瘤和暴露于环境刺激的炎症组织中都会产生TLS [11] [12]。

2.2. TLS构成与异质性

TLS大多位于肿瘤周围的间质和/或浸润边缘,其中TLS的成熟程度从密集的淋巴细胞聚集体(早期TLS)到初级和次级滤泡样TLS不等,这取决于滤泡树突状细胞(FDCs)的存在和生发中心(GC)反应。成熟TLS包含GC活性,由表达活化诱导脱氨酶(AID)和增殖标记物Ki67的B细胞定义,并被HEV包围 [13] [14]。不仅TLS的存在,而且TLS的组成成分,如T细胞、B细胞、滤泡树突状细胞(FDCs)、TFH细胞、Treg细胞、巨噬细胞、HEV和趋化因子等,在抗肿瘤反应中都发挥了重要的作用 [15]。

2.3. TLS在HCC预后方面的作用

TLS已在多种肿瘤类型中观察到,如黑色素瘤、非小细胞肺癌、头颈部鳞癌、卵巢癌、乳腺癌、HCC和胃肠道间质瘤等。在非小细胞型肺癌、结直肠癌、黑色素瘤等实体瘤中,高密度的TLS与更好的无复发生存率(RFS)和总生存率(OS)相关,被认为是独立于肿瘤TNM分期的预后因素 [16]。然而,在HCC,它的预后价值仍然是一个有争议的问题。

2015年,Finkin等 [17] 对82名具有H&E染色切片的患者进行研究,TLS的存在被定义为每个患者 ≥ 50%的门户区域存在任何组织学TLS特征,并得出结论:HCC中较高的TLS评分与晚期复发风险增加和总生存期下降相关。2019年,Calderaro等 [18] 进行了更大量样本的研究,训练队列273人,验证队列225人。由于肿瘤内TLS较少,遂将至少有1个肿瘤内TLS的肿瘤归类为TLS+,没有任何TLS的肿瘤归类为TLS−;对于非肿瘤性肝脏,其中通常观察到大量的TLS,遂评估了每平方毫米的TLS密度,密度高于全系列中位数的病例被归类为TLS+,密度低于中位数的病例被归类为TLS−。还记录了TLS成熟的最大程度。距离肿瘤边缘小于2 mm的非肿瘤性肝脏区域被排除在分析之外。因此得出了与Finkin截然相反的结论,即非肿瘤性肝实质中的TLS与HCC的早期或晚期复发无关,而瘤内TLS与肿瘤早期复发风险降低有关。2020年,lihui等 [19] 对肿瘤内TLS进行研究显示:TLS成熟的存在和程度与早期HCC复发的风险降低相关,但这与OS和晚期肿瘤复发无关。值得注意的是,TLS的预后价值仅限于手术切除治疗的BCLC 0-A期HCC。对于晚期HCC (BCLC B-C期),没有观察到肿瘤内TLS和OS或RFS之间的关联。2021年,Li hui等 [20] 进一步纳入两个独立队列的总共360名患者,以观察到至少一个肿瘤内TLS浸润,则认为患者为肿瘤内TLS+。瘤周TLS的密度计算为瘤周(距浸润性肿瘤边界5 mm)区域的数量/mm2。使用ROC曲线检查了区分低和高瘤周TLS密度患者的阈值,最小p值方法用于测试确定的截止值,联合分析瘤内和瘤周TLS对HCC预后的影响。结果显示单独或联合高密度瘤周TLS与良好的临床结果相关。

这种研究结果的差异,一方面是由于研究人群、研究人数、统计方法的不同。另一方面,乳腺癌相关研究中也出现了类似的情况,也许能给我们提供更多的思考。Martinet [21]、Gobert [22] 等发现乳腺癌中TLS与良好预后相关,但之后Sofopoulos [23] 等研究发现肿瘤周围存在TLS与乳腺癌不良病理特征及较差的预后相关,且这种不良预后取决于肿瘤周围TLS的位置和密度。并推测位于浸润性边缘或肿瘤周围的免疫元件可能反映恶性细胞从肿瘤中心向与侵袭和转移相关的肿瘤外部区域进行性移行。因此,外周TLS可能有助于免疫抑制环境,通过对抗肿瘤免疫的负面影响或通过对肿瘤的直接支持作用支持肿瘤生长。这种猜想正好能解释肝癌中Finkin和Calderaro研究结果的差异。而TME中参与肿瘤进展和转移的细胞,就不得不提TAMs。

3. TAMs

肿瘤区域周围的巨噬细胞被称为肿瘤相关巨噬细胞(TAMs)。肝脏巨噬细胞由库普弗细胞和单核细胞组成。库普弗细胞是自我维持的、不迁移的、驻留在组织中的吞噬细胞,起源于胚胎发生过程中卵黄囊衍生的前体细胞 [24]。库普弗细胞对肝脏和全身稳态至关重要,因为它们本质上是免疫原性的,并从局部微环境接收信号,从而促进其功能分化 [25]。在危险信号激活后,库普弗细胞调节炎症,并向肝脏募集免疫细胞——包括大量单核细胞。单核细胞来源的细胞可以发育成肝树突状细胞或单核细胞来源的巨噬细胞 [26]。

3.1. TAMs的分型

根据巨噬细胞对不同环境刺激的炎症状态,巨噬细胞可分为两个主要亚型:经典激活的M1型巨噬细胞和交替激活的M2型巨噬细胞。这两种不同的功能表型在体外调节炎症进展方面具有矛盾的作用 [27]。M1型巨噬细胞主要由微生物成分诱导,如脂多糖(LPS),或由促炎细胞因子诱导,包括干扰素-γ (IFN-γ)、肿瘤坏死因子(TNF)和toll样受体(TLR)配体。M1巨噬细胞通过释放一氧化氮(NO)、活性氧(ROS)和促炎细胞因子白细胞介素(IL)-1、IL-6、IL-12、肿瘤坏死因子-α、CXCL5和CXCL8-10来发挥促炎功能,涉及抗原处理和呈递,促进效应T细胞的功能 [28]。IL-4、IL-10和IL-13以及糖皮质激素诱导向M2表型的极化。M2巨噬细胞发挥免疫抑制功能,并通过分泌IL-10和其他免疫抑制细胞因子促进组织修复 [29] [30]。TME使巨噬细胞的分化和功能偏向免疫抑制和肿瘤促进细胞。

3.2. TAMs的识别与检测

CD68通常用作肝TAMs的指标,CD86 (M1)、CD163 (M2)和CD206 (M2)的表达水平在体外被广泛接受以区分M1和M2巨噬细胞 [31]。低水平的CD86 M1巨噬细胞和高水平的CD206 M2巨噬细胞与HCC的侵袭性表型相关,表明CD86和CD206表达的联合分析可能为HCC提供一种预后工具 [32]。使用癌症基因组图谱中的患者数据进行的免疫原性分析表明,TAM在HCC中大量存在,且大多极化为M2表型 [31]。

3.3. TME中TAMs的功能

TAMs已被证明能为肿瘤募集调节性T细胞(Tregs);Tregs的募集会损害效应T细胞的激活和功能 [33]。此外,越来越多的证据表明肿瘤干细胞与TAMs的相互作用可促进肿瘤发生 [34]。在HCC中,TAMs 通过转化生长因子-β促进癌细胞的干细胞样特性 [35]。简而言之,TAMs水平的增加已被证明能促进血管生成、癌细胞增殖、侵袭和转移;高水平的TAMs也与HCC患者的不良预后相关 [36] [37]。

3.4. TLS中的TAMs在HCC的研究进展

2015年,Finkin等 [17] 在用DEN诱导NF-κB信号通路激活的小鼠HCC模型中发现,肝癌干细胞首先出现在TLS内,后来向外迁移,形成可见的肿瘤。免疫组织化学染色显示,其由T淋巴细胞和B淋巴细胞、中性粒细胞(位于ELS外周)、NK细胞、巨噬细胞、T调节(Treg)细胞、滤泡树突状细胞组成,并含有HEV,证实这些是真正的TLS。有其他的研究显示,TAMs产生IL-6,并通过STAT3发出信号,促进HCC干细胞在人体内的扩增 [3] [38],且肿瘤干细胞与TAMs的相互作用可促进肿瘤发生 [34]。由此可见,TLS内的肝癌干细胞与TAMs有着密不可分的关系,而关于这一点目前并没有相关的研究。

2019年,Calderaro等 [18] 的研究结论是HCC手术切除后,肿瘤内TLSs与早期复发风险较低相关。早期复发被认为反映了切除肿瘤的转移,而不是新的致癌作用,可以假设位于肿瘤内的TLS可能通过促进局部抗原呈递和淋巴细胞分化有助于有效的抗肿瘤免疫反应。2020年Li hui等 [19] 的研究验证了此观点:TLS与肿瘤内CD3+、CD8+、CD20+增加以及Foxp3+和CD68+细胞浸润减少有关。之后,Li Hui等 [20] 进一步研究显示:与瘤周低密度TLS相比,瘤周高密度TLS与肿瘤内CD3+ T细胞、CD8+ T细胞和CD20+ B细胞增加显著相关,也与Foxp3+调节性T细胞和CD68+巨噬细胞减少有关。同时,与瘤周TLS相比,瘤内TLS的CD20+ B细胞和CD68+巨噬细胞的数量稍低,CD8+ T细胞和CD57+细胞数量更高。换言之,即TLS的存在与TAM的减少存在相关关系,且TLS的密度更高、功能更强时这种关系就更加明显。这也正与肿瘤微环境中M2型TAM的免疫抑制功能相符合。

但史婉婉等 [39] 最新的一项关于HCC相关TLS免疫细胞组成的研究结果显示,TLS阳性早期HCC患者,瘤内TLS的CD3+、CD20+和CD21+比例显著高于瘤旁TLS,PD1+比例显著低于瘤旁TLS,CD45RO+和CD68+比例差异无统计学意义。TLS阳性早期HCC患者瘤内TLS的CD3+、CD20+和CD21+比例显著高于晚期HCC患者,CD45RO+和CD68+比例差异无统计学意义。也就是说,在早期HCC患者,瘤内和瘤旁TLS中CD68+ TAMs的数量无显著差异;同时TLS阳性的早期和晚期HCC患者,其TLS内的TAMs数量也无显著差异。显然这与之前Calderaro和Li hui等的研究存在割裂。这也正是我们关注的焦点。

4. 讨论

我们可以明确的是,Li hui等 [19] [20] 研究的是整体的TAMs,而史婉婉等 [39] 研究的是TLS内的TAMs,在排除实验误差等导致结果不准确的情况下,假如两者的实验结果都成立的话,我们可以初步得出这样一个结论,即TLS的存在与HCC肿瘤微环境中总的TAMs数量减少有关,但早期和晚期、瘤内和瘤旁TLS内的TAMs数量是基本保持不变的,这就表示HCC肿瘤微环境中TLS内和TLS外的TAMs在功能和细胞类型上可能存在较大的差异,关于这一点需要更深入的研究。而两者的局限都是只标记了CD68,而没有对TAMs的亚型进行标记。结合Finkin等 [17] 的研究,即肝癌干细胞首先出现在TLS内,后来向外迁移,形成可见的肿瘤,这些都提示TLS与TAMs有着更复杂的相互作用。而近年来,部分学者认为TAMs已经偏离了经典活化途径的M1和替代活化途径的M2型巨噬细胞,难以将TAMs的表型和作用完全概述,建议根据TAMs表面抗原表达分为CD68+ TAMs,CD163+ TAMs,CD204+ TAMs,CD169+ TAMs,以及CCL18+ TAMs等 [40] [41],并且目前的基因研究也认为TAMs类似于免疫调节型的巨噬细胞 [40] [42]。不管是哪种情况,我们都需要对HCC的TLS中TAMs进行更多的研究,以得出更准确、细致的结论,相信这对于更深入了解HCC的发生发展机制及免疫治疗都是十分重要的。

基金项目

国家自然科学基金(81672716)。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Singal, A.G., Lampertico, P. and Nahon, P. (2020) Epidemiology and Surveillance for Hepatocellular Carcinoma: New Trends. Journal of Hepatology, 72, 250-261.
https://doi.org/10.1016/j.jhep.2019.08.025
[3] Tian, Z., Hou, X., Liu, W., Han, Z. and Wei, L. (2019) Macrophages and Hepatocellular Carcinoma. Cell & Bioscience, 9, Article No. 79.
https://doi.org/10.1186/s13578-019-0342-7
[4] Hernandez-Gea, V., Toffanin, S., Friedman, S.L. and Llovet, J.M. (2013) Role of the Microenvironment in the Pathogenesis and Treatment of Hepatocellular Carcinoma. Gastroenterology, 144, 512-527.
https://doi.org/10.1053/j.gastro.2013.01.002
[5] Hou, X.J., Ye, F., Li, X.Y., Liu, W.T., Jing, Y.Y., Han, Z.P., et al. (2018) Immune Response Involved in Liver Damage and the Activation of Hepatic Progenitor Cells during Liver Tumorigenesis. Cellular Immunology, 326, 52-59.
https://doi.org/10.1016/j.cellimm.2017.08.004
[6] Dieu-Nosjean, M.C., Giraldo, N.A., Kaplon, H., Germain, C., Fridman, W.H. and Sautès-Fridman, C. (2016) Tertiary Lymphoid Structures, Drivers of the Anti-Tumor Responses in Human Cancers. Immunological Reviews, 271, 260-275.
https://doi.org/10.1111/imr.12405
[7] Ostuni, R., Kratochvill, F., Murray, P.J. and Natoli, G. (2015) Macrophages and Cancer: From Mechanisms to Therapeutic Implications. Trends in Immunology, 36, 229-239.
https://doi.org/10.1016/j.it.2015.02.004
[8] Jacquelot, N., Tellier, J., Nutt, S. and Belz, G. (2021) Tertiary Lymphoid Structures and B Lymphocytes in Cancer Prognosis and response to Immunotherapies. Oncoimmunology, 10, Article ID: 1900508.
https://doi.org/10.1080/2162402X.2021.1900508
[9] Buckley, C., Barone, F., Nayar, S., Bénézech, C. and Caamaño, J. (2015) Stromal Cells in Chronic Inflammation and Tertiary Lymphoid Organ Formation. Annual Review of Immunology, 33, 715-745.
https://doi.org/10.1146/annurev-immunol-032713-120252
[10] Barone, F., Gardner, D.H., Nayar, S., Steinthal, N., Buckley, C.D. and Luther, S.A. (2016) Stromal Fibroblasts in Tertiary Lymphoid Structures: A Novel Target in Chronic Inflammation. Frontiers in Immunology, 7, Article No. 477.
https://doi.org/10.3389/fimmu.2016.00477
[11] Sautes-Fridman, C., Petitprez, F., Calderaro, J. and Fridman, W.H. (2019) Tertiary Lymphoid Structures in the Era of Cancer Immunotherapy. Nature Reviews Cancer, 19, 307-325.
https://doi.org/10.1038/s41568-019-0144-6
[12] Gago da Graca, C., van Baarsen, L.G.M. and Mebius, R.E. (2021) Tertiary Lymphoid Structures: Diversity in Their Development, Composition, and Role. Journal of Immunology, 206, 273-281.
https://doi.org/10.4049/jimmunol.2000873
[13] Siliņa, K., Soltermann, A., Attar, F.M., Casanova, R., Uckeley, Z.M., Thut, H., et al. (2018) Germinal Centers Determine the Prognostic Relevance of Tertiary Lymphoid Structures and Are Impaired by Corticosteroids in Lung Squamous Cell Carcinoma. Cancer Research, 78, 1308-1320.
https://doi.org/10.1158/0008-5472.CAN-17-1987
[14] Posch, F., Silina, K., Leibl, S., Mündlein, A., Moch, H., Siebenhüner, A., et al. (2018) Maturation of Tertiary Lymphoid Structures and Recurrence of Stage II and III Colorectal Cancer. OncoImmunology, 7, e1378844.
https://doi.org/10.1080/2162402X.2017.1378844
[15] Germain, C., Gnjatic, S., Tamzalit, F., Knockaert, S., Remark, R., Goc, J., et al. (2014) Presence of B Cells in Tertiary Lymphoid Structures Is Associated with a Protective Immunity in Patients with Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 189, 832-844.
https://doi.org/10.1164/rccm.201309-1611OC
[16] Domblides, C., Rochefort, J., Riffard, C., Panouillot, M. and Lescaille G. (2021) Tumor-Associated Tertiary Lymphoid Structures: From Basic and Clinical Knowledge to Therapeutic Manipulation. Frontiers in Immunology, 12, Article ID: 698604.
https://doi.org/10.3389/fimmu.2021.698604
[17] Finkin, S., Taniguchi, K., Weber, A., Unger, K., et al. (2015) Ectopic Lymphoid Structures Function as Microniches for Tumor Progenitor Cells in Hepatocellular Carcinoma. Nature Immunology, 16, 1235-1244.
https://doi.org/10.1038/ni.3290
[18] Calderaro, J., Petitprez, F., Becht, E., Laurent, A., Hirsch, T.Z., Rousseau, B., et al. (2019) Intra-Tumoral Tertiary Lymphoid Structures Are Associated with a Low Risk of Early Recurrence of Hepatocellular Carcinoma. Journal of Hepatology, 70, 58-65.
https://doi.org/10.1016/j.jhep.2018.09.003
[19] Li, H., Wang, J., Liu, H., Lan, T., Xu, L., Wang, G., et al. (2020) Existence of Intratumoral Tertiary Lymphoid Structures Is Associated with Immune Cells Infiltration and Predicts Better Prognosis in Early-Stage Hepatocellular Carcinoma. Aging, 12, 3451-3472.
https://doi.org/10.18632/aging.102821
[20] Li, H., Liu, H., Fu, H., Li, J., Xu, L., Wang, G., et al. (2021) Peritumoral Tertiary Lymphoid Structures Correlate with Protective Immunity and Improved Prognosis in Patients with Hepatocellular Carcinoma. Frontiers in Immunology, 12, Article ID: 648812.
https://doi.org/10.3389/fimmu.2021.648812
[21] Martinet, L., Garrido, I., Filleron, T., Le Guellec, S., Bellard, E., Fournie, J.J., et al. (2011) Human Solid Tumors Contain High Endothelial Venules: Association with T- and B-Lymphocyte Infiltration and Favorable Prognosis in Breast Cancer. Cancer Research, 71, 5678-5687.
https://doi.org/10.1158/0008-5472.CAN-11-0431
[22] Gobert, M., Treilleux, I., Bendriss-Vermare, N., Bachelot, T., Goddard-Leon, S., Arfi, V., et al. (2009) Regulatory T Cells Recruited through CCL22/CCR4 Are Selectively Activated in Lymphoid Infiltrates Surrounding Primary Breast Tumors and Lead to an Adverse Clinical Outcome. Cancer Research, 69, 2000-2009.
https://doi.org/10.1158/0008-5472.CAN-08-2360
[23] Sofopoulos, M., Fortis, S.P., Vaxevanis, C.K., Sotiriadou, N.N., Arnogiannaki, N., Ardavanis, A., et al., (2019) The Prognostic Significance of Peritumoral Tertiary Lymphoid Structures in Breast Cancer. Cancer Immunology, Immunotherapy, 68, 1733-1745.
https://doi.org/10.1007/s00262-019-02407-8
[24] Krenkel, O. and Tacke, F. (2017) Liver Macrophages in Tissue Homeostasis and Disease. Nature Reviews Immunolog, 17, 306-321.
https://doi.org/10.1038/nri.2017.11
[25] Scott, C.L., Zheng, F., De Baetselier, P., Martens, L., Saeys, Y., De Prijck, S., et al. (2016) Bone Marrow-Derived Monocytes Give Rise to Self-Renewing and Fully Differentiated Kupffer Cells. Nature Communications, 7, Article No. 10321.
https://doi.org/10.1038/ncomms10321
[26] Okabe, Y. and Medzhitov, R. (2016) Tissue Biology Perspective on Macrophages. Nature Immunology, 17, 9-17.
https://doi.org/10.1038/ni.3320
[27] Sica, A., Erreni, M., Allavena, P. and Porta, C. (2015) Macrophage Polarization in Pathology. Cellular and Molecular life Sciences, 72, 4111-4126.
https://doi.org/10.1007/s00018-015-1995-y
[28] Chawla, A., Nguyen, K.D. and Goh, Y.P. (2011) Macrophage-Mediated Inflammation in Metabolic Disease. Nature reviews. Immunology, 11, 738-749.
https://doi.org/10.1038/nri3071
[29] Dou, L., Shi, X., He, X. and Gao, Y. (2019) Macrophage Phenotype and Function in Liver Disorder. Frontiers in Immunology, 10, Article No. 3112.
https://doi.org/10.3389/fimmu.2019.03112
[30] Sica, A., Invernizzi, P. and Mantovani, A. (2014) Macrophage Plasticity and Polarization in Liver Homeostasis and Pathology. Hepatology, 59, 2034-2042.
https://doi.org/10.1002/hep.26754
[31] Elliott, L.A., Doherty, G.A., Sheahan, K. and Ryan, E.J. (2017) Human Tumor-Infiltrating Myeloid Cells: Phenotypic and Functional Diversity. Frontiers in Immunology, 8, Article No. 86.
https://doi.org/10.3389/fimmu.2017.00086
[32] Dong, P., Ma, L., Liu, L., Zhao, G., Zhang, S., Dong, L., et al. (2016) CD86+/CD206+, Diametrically Polarized Tumor-Associated Macrophages, Predict Hepatocellular Carcinoma Patient Prognosis. International Journal of Molecular Sciences, 17, Article No. 320.
https://doi.org/10.3390/ijms17030320
[33] Wang, D., Yang, L., Yue, D., Cao, L., Li, L., Wang, D., et al. (2019) Macrophage-Derived CCL22 Promotes an Immunosuppressive Tumor Microenvironment via IL-8 in Malignant Pleural Effusion. Cancer Letters, 452, 244-253.
https://doi.org/10.1016/j.canlet.2019.03.040
[34] Ayob, A.Z. and Ramasamy, T.S. (2018) Cancer Stem Cells as Key Drivers of Tumour Progression. Journal of Biomedical Science, 25, Article No. 20.
https://doi.org/10.1186/s12929-018-0426-4
[35] Fan, Q.M., Jing, Y.Y., Yu, G.F., Kou, X.R., Ye, F., Gao, L., et al. (2014) Tumor-Associated Macrophages Promote Cancer Stem Cell-Like Properties via Transforming Growth Factor-Beta1-Induced Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Cancer Letters, 352, 160-168.
https://doi.org/10.1016/j.canlet.2014.05.008
[36] Thorsson, V., Gibbs, D.L., Brown, S.D., Wolf, D., Bortone, D.S., Ou Yang, T.H., et al. (2019) The Immune Landscape of Cancer. Immunity, 51, 411-412.
https://doi.org/10.1016/j.immuni.2019.08.004
[37] Chew, V., Lai, L., Pan, L., Lim CJ., Li, J., Ong, R., et al. (2017) Delineation of an Immunosuppressive Gradient in Hepatocellular Carcinoma Using High-Dimensional Proteomic and Transcriptomic Analyses. Proceedings of the National Academy of Sciences of the United States of America, 114, E5900-E5909.
https://doi.org/10.1073/pnas.1706559114
[38] Wan, S., Zhao, E., Kryczek, I., Vatan, L., Sadovskaya, A., Ludema, G., et al. (2014) Tumor-Associated Macrophages Produce Interleukin 6 and Signal via STAT3 to Promote Expansion of Human Hepatocellular Carcinoma Stem Cells. Gastroenterology, 147, 1393-1404.
https://doi.org/10.1053/j.gastro.2014.08.039
[39] 史婉婉, 周子珍, 谭康安, 邵晨, 洪源, 肝细胞癌相关三级淋巴样结构免疫细胞组成[J]. 中国肝脏病杂志(电子版) , 2021, 13(1): 39-45.
[40] Ni, C., Yang, L., Xu, Q., Yuan, H., Wang, W., Xia, W., et al. (2019) CD68- and CD163-Positive Tumor Infiltrating Macrophages in Non-Metastatic Breast Cancer: A Retrospective Study and Meta-Analysis. Journal of Cancer, 10, 4463-4472.
https://doi.org/10.7150/jca.33914
[41] Su, Y., Zhou, Y., Sun, Y.J., Wang, Y.L., Yin, J.Y., Huang, Y.J., et al. (2019) Macrophage-Derived CCL18 Promotes Osteosarcoma Proliferation and Migration by Upregulating the Expression of UCA1. Journal of Molecular Medicine, 97, 49-61.
https://doi.org/10.1007/s00109-018-1711-0
[42] Biswas, S.K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., et al. (2006) A Distinct and Unique Transcriptional Program Expressed by Tumor-Associated Macrophages (Defective NF-κB and Enhanced IRF-3/STAT1 Activation). Blood, 107, 2112-2122.
https://doi.org/10.1182/blood-2005-01-0428