减肥产品及其药理作用机制研究进展
Research Progress of Slimming Products and Their Pharmacological Mechanisms
DOI: 10.12677/HJFNS.2022.111009, PDF, HTML, XML, 下载: 308  浏览: 844  国家自然科学基金支持
作者: 梁 淑, 黄 蓉, 王略力, 陈 晨, 肖创, 杨为民*:昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明;方 雁:昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明;昆明医科大学第一附属医院,云南 昆明;杜晓华:昆明医科大学第一附属医院,云南 昆明
关键词: 肥胖肥胖治疗膳食补充剂抗肥胖药物药理作用 Obesity Obesity Treatment Dietary Supplements Anti-Obesitydrug Pharmacologic Action
摘要: 随着人民生活水平的快速提高和国民经济的飞速发展,人们的饮食和生活习惯发生巨大改变,肥胖发病率的逐年递增,减肥产品越来越受欢迎,并且在柜台上可以买到各种各样的这些产品。长期以来,用于减肥的产品包括化学药、保健品、膳食补充剂等。因此,为了让肥胖患者了解减肥产品并做出更好的选择,本文对一些减肥产品临床效果及作用机制进行综述。
Abstract: With the rapid improvement of people’s living standards and the rapid development of national economy, people's diet and living habits have changed greatly, the incidence of obesity is increasing year by year, weight loss products are more and more popular, and you can buy a variety of these products on the counter. Products for weight loss have long included chemicals, health supplements and dietary supplements. Therefore, in order to help obese patients understand weight-loss products and make better choices, this paper reviews the clinical effects and mechanisms of some weight-loss products.
文章引用:梁淑, 黄蓉, 王略力, 陈晨, 方雁, 杜晓华, 肖创, 杨为民. 减肥产品及其药理作用机制研究进展[J]. 食品与营养科学, 2022, 11(1): 73-79. https://doi.org/10.12677/HJFNS.2022.111009

1. 引言

随着人民生活水平的快速提高和国民经济的飞速发展,人们的饮食和生活习惯发生巨大改变,超重与肥胖群体显著增加,肥胖已成为全球主要的健康问题之一。过去四十年,全球肥胖患病率增加了两倍 [1]。根据世界卫生组织的数据,18岁以上肥胖或超重的人口有20亿,约占世界人口的30% [2],肥胖每年导致全球超过340万人死亡 [3]。肥胖会增加患2型糖尿病、脂肪肝、高血压、心肌梗塞、中风、痴呆、骨关节炎、阻塞性睡眠呼吸暂停和多种癌症等疾病的风险,从而影响生活质量和降低预期寿命 [4]。无论是出于对健康的考虑,还是对美观的需求,减肥已经成为很多肥胖和爱美人士生活中的头等大事。

肥胖是指一定程度的明显超重与脂肪层过厚,是体内脂肪,尤其是甘油三酯积聚过多而导致的一种状态。由于食物摄入过多或机体代谢的改变而导致体内脂肪积聚过多造成体重过度增长并引起人体病理、生理改变或潜伏。肥胖症是一种慢性、复发性、多成因疾病,需长期治疗以减少肥胖相关疾病风险。长期以来,用于减肥的产品包括化学药、保健品、膳食补充剂等。近年来,由于肥胖发病率的逐年递增,减肥产品越来越受欢迎,并且在柜台上可以买到各种各样的这些产品。因此,为了让肥胖患者了解减肥产品并做出更好地选择,本文对一些减肥产品临床效果及作用机制进行综述。

2. 膳食补充剂

2.1. 壳聚糖

壳聚糖是β-1,4连接的葡糖胺残基的天然多糖,源自甲壳素的脱乙酰作用,主要存在于虾和蟹中 [5]。壳聚糖是一种难以溶解不能被机体吸收的纤维素,具有降低胆固醇的特点,因此被作为控制肥胖症的膳食补充剂。其发挥减肥作用的机制是通过与肠腔内带负电荷的脂肪分子结合,从而阻止其吸收。同时,壳聚糖被认为是脂肪酶的竞争性抑制剂,即通过调节消化道脂肪酶的活性来抑制脂质的消化吸收,起到降血脂的作用。体外研究也表明壳聚糖可以调节脂肪因子分泌并抑制脂肪生成 [6] [7]。最近的一项回顾性研究分析了其对肥胖患者的影响,得出结论,将壳聚糖用作膳食补充剂可对减轻体重、改善血脂和心血管因素产生轻微的短期和中期影响 [8]。

2.2. 白芸豆提取物

白芸豆被认为是一种营养食品,富含蛋白质和碳水化合物,白芸豆提取物(PVE)富含经典的α-淀粉酶抑制剂(α-AI),被称为“淀粉阻滞剂”。目前,大量证据表明PVE具有抗氧化、抗癌、抗炎、抗肥胖、抗糖尿病和心脏保护等特性 [9]。实验动物研究表明,PVE可显着降低食欲、减少碳水化合物吸收和代谢、脂质积累、体重增加、血糖以及葡萄糖吸收和调节肥胖动物肠道中的微生物群 [10]。Maccioni等人研究表明经常摄入白芸豆含有可溶性纤维和抗性淀粉的食物可降低人体的血糖指数、低密度脂蛋白(LDL)、增加高密度脂蛋白(HDL)水平,并减少代谢综合征发生的危险因素,从而降低患心血管疾病、肥胖症和糖尿病的风险 [11]。因此,PVE在减缓复杂碳水化合物分解、减少肠道吸收、影响葡萄糖–胰岛素系统等方面具有突出优势,从而在肥胖症和糖尿病等疾病的研究中具有广阔的前景。

2.3. 咖啡

咖啡最主要的成分的是咖啡因、绿原酸(CGA)。咖啡因是一种天然存在的生物碱,具有刺激特性。因其是脂溶性化合物,可以穿过血脑屏障而影响神经功能。咖啡因通过增加交感神经系统的兴奋性、促进脂肪氧化和棕色脂肪组织活化来抑制食欲和增加能量消耗 [12]。CGA是一种抗氧化剂和抗炎酚酸,在神经和肝脏保护中发挥作用,并具有降低脂质和葡萄糖的特性 [13] [14]。

CGA对脂肪形成酶的抑制作用可能部分是由于上游脂肪生成转录因子的调节。Wang等人发现喂食含有CGA高脂饲料肥胖小鼠体重显着降低。在附睾脂肪组织中,CGA显着降低脂肪酸合酶(FASN)表达和上游转录因子C/EBP、PPARγ和SREBP的表达,但它增加了PPARα的表达 [15]。一项对30名超重个体进行的为期12周的随机临床试验发现,饮用富含CGA的咖啡的受试者平均体重减轻5.4 kg,而速溶咖啡组的体重减轻了1.7 kg,表明CGA对体重管理有益 [16]。

另外,一项针对64名肥胖妇女的随机临床试验发现,配合限制能量饮食并接受400 mg绿咖啡提取物干预8周后发现,血清总胆固醇、低密度脂蛋白、瘦素和血浆游离脂肪酸显著降低,血清脂联素水平显著升高,显示咖啡提取物结合限制能量饮食可以调节人体脂质代谢,减少脂肪积累 [17]。Flanagan等研究了CGA的长期健康益处。他们通过测定游离脂肪酸和甘油含量,摄入192小时CGA增加了脂肪分解 [18]。在3T3-L1细胞中,20 μm CGA通过上调HSL表达来增加脂解作用 [19]。总的说来,咖啡提取物含有高浓度的绿原酸及其他多酚成分,其能够影响葡萄糖和脂肪的代谢,从而达到降脂减肥的功效。

2.4. 茶类

大量研究发现绿茶、红茶、乌龙茶以及黑茶均表现出较好的减肥降脂的作用。茶的主要成分儿茶色素及没食子酸儿茶素没食子酸酯(EGCG)已被证实具有广泛的生物活性,如减轻体重、改善代谢综合征、心血管疾病和癌症预防,以及防止神经变性 [20]。儿茶素可能通过抑制与脂肪合成相关酶的活性,从而抑制肥胖 [21]。Wolfram等人使用高脂肪饮食诱导的小鼠肥胖模型,观察到EGCG可减少高脂饮食诱导的小鼠体重增加 [22],且脂肪组织中的脂肪酸合酶(FASN)和乙酰辅酶A羧化酶(ACC) mRNA水平显着降低。一项对1210名成年人进行流行病学调查表明,与不习惯性饮茶者相比,习惯喝茶的人体脂百分比降低19.6%,腰臀比降低2.1% [23]。Chen等人总结了针对102名肥胖女性随机临床试验结果表明,与安慰剂组相比,服用12周的高剂量绿茶可以使体重显着减轻,并降低BMI、腰围、总胆固醇和血浆低密度脂蛋白水平,对参与者没有任何副作用 [24]。

3. FDA批准的减肥药物

3.1. 奥利司他(Orlistat)

奥利司他是最早批准用于长期治疗肥胖的药物,是目前最畅销的减肥产品。它是一种强效和长效的特异性胃肠道脂肪酶抑制剂,其作用机制是通过使胃肠道脂肪酶失活,直接阻断人体对食物中脂肪的吸收,从而达到减重的目的 [25]。作为一种安全的减肥药,其有效成分不进入血液循环,不作用于中枢神经系统,副作用较少且能长期使用。Orlistat兼具控制血糖的药理作用,降低肥胖患者中糖尿病的发生率,起到预防糖尿病的作用 [26]。Panda等系统评价了2000年至2016年间Orlistat在改善排卵率、体重、血脂等方面的有效性,得出结论,治疗组的体重均显著减轻,在药物治疗4周后的血清总胆固醇和甘油三酯水平显著下降 [27]。

3.2. 纳曲酮安非他酮组复方制剂

纳曲酮安非他酮组复方制剂由两种药物组成:阿片拮抗剂纳曲酮和抗抑郁药安非他酮。该药物作用于下丘脑神经中枢阿片受体–促黑素细胞皮质素(POMC)释放出神经元,进而降低食欲,减少能量摄入和增加产热。研究表明,接受该药物治疗超过12个月的肥胖患者的体重减轻比对照组高4.6%。临床研究结果显示,将安非他酮和纳曲酮一起服用时,能够增强抑制食欲的作用,使体重下降更加明显,但是有头疼、便秘、呕吐等的不良反应 [28]。2014年,该复方制剂作为治疗肥胖症的新药被美国FDA批准上市。多项长期双盲对照试验评估了纳曲酮–安非他酮临床效果,与安慰剂相比,服用纳曲酮–安非他酮56周的患者体重均有显著降低 [29]。另有研究评估了505名超重或肥胖的糖尿病患者的体重减轻情况 [30]。以上试验都揭示了纳曲酮–安非他酮治疗患者的高密度脂蛋白胆固醇和甘油三酯的改善。

3.3. 芬特明与托吡酯缓释剂胶囊

芬特明是一种加强中枢神经系统中去甲肾上腺素和多巴胺作用的药物,同样通过抑制食欲,减少能量摄入,但临床研究显示芬特明有荨麻疹和心血管疾病等不良反应 [31]。托吡酯是一种抗惊厥药物,最初也被批准用于预防偏头痛。后来在2型糖尿病和高血压患者的研究中发现托吡酯具有显著的减肥作用 [32]。因此,研究人员将低剂量的芬特明和托吡酯进行合并在临床研究中对该药物进行评估,以了解其对肥胖的影响。然而,其在人体中的作用机制尚未完全了解。在两项随机双盲对照试验中,分别有1267肥胖患者和2487名患有超过两种肥胖并发症的参与者,与安慰剂组相比,治疗一年后患者体重均有显著下降,并且两项研究均显示用药后心血管危险因素有显著改善 [33] [34]。该研究结果使FDA批准了芬特明–托吡酯缓释片。另有一项为期2年的扩展试验也证实了先前的研究结果,药物芬特明–托吡酯的摄入对体重减轻和血压、血脂、空腹血糖、空腹胰岛素和腰围有显著改善 [35]。

3.4. 利拉鲁肽

利拉鲁肽主要应用于糖尿病治疗,其化学结构和人胰高血糖素样肽-1 (GLP-1)相似 [36]。临床研究发现利拉鲁肽在治疗糖尿病的同时改善成年人的肥胖症状。其主要作用机制是作用于下丘脑弓状核神经中枢,抑制食欲,减少摄食量,达到减肥降脂的功效 [37]。2014年底,利拉鲁肽成为第一个被批准用于治疗肥胖症的GLP-1受体激动剂,约为治疗糖尿病所用最高剂量的两倍,并于2020年被批准用于12岁及以上肥胖青少年的体重管理 [38]。在一项为期16周的临床试验中,利拉鲁肽组与安慰剂组相比,体重有显著下降 [39]。另一项为期56周的III期临床研究结果显示,在肥胖且无糖尿病的患者中使用利拉鲁肽与安慰剂进行对比,患者的平均体重减轻了8.4 kg [40]。尽管GLP-1相关不良反应(恶心、呕吐、腹泻和便秘)仍然存在,但在对肥胖患者每日皮下注射利拉鲁肽的临床试验中,这些影响往往是轻度和短暂的。

3.5. 氯卡色林

2012年6月,FDA批准盐酸氯卡色林作为减肥药上市,通过特异性激活下丘脑中的5-HT2C受体,进而刺激下丘脑弓状核中的阿片黑素原(POMC)受体,抑制食欲,减少摄食量,改善肥胖 [41]。且位于心脏瓣膜上的5-HT2B受体并不会受到影响,从而不会损伤心脏瓣膜,损害患者的健康。当体重指数过度超标并且具有高血压或糖尿病等相关疾病的肥胖患者,可以采用盐酸氯卡色林治疗。然而,其有头疼、头晕、便秘、失眠等严重不良反应 [42],应该谨慎使用。2020年初,氯卡色林因研究表明长期使用会增加患癌症的风险而从临床使用中撤出 [43] [44]。

4. 总结与展望

目前,肥胖已经成为全球性的健康问题,面对肥胖发病逐年严峻的形势,减肥类产品的需求会不断增加,为了促进该行业的发展,研究也需要进一步深入。减肥产品的研发者和生产者不仅要注重其减肥功效,更应该确保安全性,这样才能充分得到市场的认可,成为肥胖患者的最佳选择。上述减肥产品进行的大多数试验也控制了饮食和运动,因此,建议将减肥产品与与改变生活方式相结合的方法控制肥胖。

基金项目

国家自然科学基金资助项目(81870037),云南省科技厅项目(202005AF150043, 202005AE160004, 2019FD020)。

NOTES

*通讯作者。

参考文献

[1] Tak, Y.J. and Lee, S.Y. (2021) Anti-Obesity Drugs: Long-Term Efficacy and Safety: An Updated Review. The World Journal of Men’s Health, 39, 208-221.
https://doi.org/10.5534/wjmh.200010
[2] Ng, M., Fleming, T., Robinson, M., et al. (2014) Global, Regional, and National Prevalence of Overweight and Obesity in Children and Adults during 1980-2013: A Systematic Analysis for the Global Burden of Disease Study 2013. The Lancet, 384, 766-781.
https://doi.org/10.1016/S0140-6736(14)60460-8
[3] Afshin, A., Forouzanfar, M.H., Reitsma, M.B., et al. (2017) Health Effects of Overweight and Obesity in 195 Countries over 25 Years. The New England Journal of Medicine, 377, 13-27.
https://doi.org/10.1056/NEJMoa1614362
[4] Lauby-Secretan, B., Scoccianti, C., Loomis, D., et al. (2016) Body Fatness and Cancer—Viewpoint of the IARC Working Group. The New England Journal of Medicine, 375, 794-798.
https://doi.org/10.1056/NEJMsr1606602
[5] Efsa Panel on Dietetic Products N, Allergies (2011) Scien-tific Opinion on the Substantiation of Health Claims Related to Chitosan and Reduction in Body Weight (ID 679, 1499), Maintenance of Normal Blood LDL-Cholesterol Concentrations (ID 4663), Reduction of Intestinal Transit Time (ID 4664) and Reduction of Inflammation (ID 1985) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal, 9, 2214.
https://doi.org/10.2903/j.efsa.2011.2214
[6] Mesa Ospina, N., Ospina Alvarez, S.P., Escobar Sierra, D.M., et al. (2015) Isolation of Chitosan from Ganoderma lucidum Mushroom for Biomedical Applications. Journal of Materials Science: Materials in Medicine, 26, 135.
https://doi.org/10.1007/s10856-015-5461-z
[7] Walsh, A.M., Sweeney, T., Bahar, B., et al. (2013) Mul-ti-Functional Roles of Chitosan as a Potential Protective Agent against Obesity. PLoS ONE, 8, e53828.
https://doi.org/10.1371/journal.pone.0053828
[8] Moraru, C., Mincea, M.M., Frandes, M., et al. (2018) A Me-ta-Analysis on Randomised Controlled Clinical Trials Evaluating the Effect of the Dietary Supplement Chitosan on Weight Loss, Lipid Parameters and Blood Pressure. Medicina (Kaunas), 54, 109.
https://doi.org/10.3390/medicina54060109
[9] Ganesan, K. and Xu, B. (2017) Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits. International Journal of Molecular Sciences, 18, 2331.
https://doi.org/10.3390/ijms18112331
[10] Udani, J., Tan, O. and Molina, J. (2018) Systematic Review and Me-ta-Analysis of a Proprietary Alpha-Amylase Inhibitor from White Bean (Phaseolus vulgaris L.) on Weight and Fat Loss in Humans. Foods, 7, 63.
https://doi.org/10.3390/foods7040063
[11] Maccioni, P., Colombo, G., Riva, A., et al. (2010) Reducing Effect of a Phaseolus vulgaris Dry Extract on Operant Self-Administration of a Chocolate-Flavoured Beverage in Rats. British Journal of Nutrition, 104, 624-628.
https://doi.org/10.1017/S0007114510001017
[12] Velickovic, K., Wayne, D., Leija, H.A.L., et al. (2019) Caffeine Exposure Induces Browning Features in Adipose Tissue in Vitro and in Vivo. Scientific Reports, 9, Article No. 9104.
https://doi.org/10.1038/s41598-019-45540-1
[13] Naveed, M., Hejazi, V., Abbas, M., et al. (2018) Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomedicine & Pharmacotherapy, 97, 67-74.
https://doi.org/10.1016/j.biopha.2017.10.064
[14] Stefanello, N., Spanevello, R.M., Passamonti, S., et al. (2019) Coffee, Caffeine, Chlorogenic Acid, and the Purinergic System. Food and Chemical Toxicology, 123, 298-313.
https://doi.org/10.1016/j.fct.2018.10.005
[15] Wang, Z., Lam, K.L., Hu, J., et al. (2019) Chlorogenic Acid Allevi-ates Obesity and Modulates Gut Microbiota in High-Fat-Fed Mice. Food Science & Nutrition, 7, 579-588.
https://doi.org/10.1002/fsn3.868
[16] Thom, E. (2007) The Effect of Chlorogenic Acid Enriched Coffee on Glucose Absorption in Healthy Volunteers and Its Effect on Body Mass When Used Long-Term in Overweight and Obese People. Journal of International Medical Research, 35, 900-908.
https://doi.org/10.1177/147323000703500620
[17] Haidari, F., Samadi, M., Mohammadshahi, M., et al. (2017) Energy Restriction Combined with Green Coffee Bean Extract Affects Serum Adipocytokines and the Body Composition in Obese Women. Asia Pacific Journal of Clinical Nutrition, 26, 1048-1054.
[18] Flanagan, J., Bily, A., Rolland, Y., et al. (2014) Lipolytic Activity of Svetol®, a Decaffeinated Green Coffee Bean Extract. Phytotherapy Research, 28, 946-948.
https://doi.org/10.1002/ptr.5085
[19] Liu, G., Huang, Y., Reis, F.S., et al. (2019) Impact of Nutritional and Environmental Factors on Inflammation, Oxidative Stress, and the Microbiome 2019. BioMed Research International, 2019, Article ID: 5716241.
https://doi.org/10.1155/2019/5716241
[20] Yang, C.S. and Hong, J. (2013) Prevention of Chronic Diseases by Tea: Possible Mechanisms and Human Relevance. Annual Review of Nutrition, 33, 161-181.
https://doi.org/10.1146/annurev-nutr-071811-150717
[21] Glisan, S.L., Grove, K.A., Yennawar, N.H., et al. (2017) Inhibition of Pancreatic Lipase by Black Tea Theaflavins: Comparative Enzymology and in Silico Modeling Studies. Food Chemistry, 216, 296-300.
https://doi.org/10.1016/j.foodchem.2016.08.052
[22] Wolfram, S., Raederstorff, D., Wang, Y., et al. (2005) TEAVIGO (Epigallocatechin Gallate) Supplementation Prevents Obesity in Rodents by Reducing Adipose Tissue Mass. Annals of Nutrition and Metabolism, 49, 54-63.
https://doi.org/10.1159/000084178
[23] Wu, C.H., Lu, F.H., Chang, C.S., et al. (2003) Relationship among Habit-ual Tea Consumption, Percent Body Fat, and Body Fat Distribution. Obesity Research, 11, 1088-1095.
https://doi.org/10.1038/oby.2003.149
[24] Chen, I.J., Liu, C.Y., Chiu, J.P., et al. (2016) Therapeutic Effect of High-Dose Green Tea Extract on Weight Reduction: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Clinical Nutrition, 35, 592-599.
https://doi.org/10.1016/j.clnu.2015.05.003
[25] Orlistat, M. (2012) LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda.
[26] Beyea, M.M., Garg, A.X. and Weir, M.A. (2012) Does Orlistat Cause Acute Kidney Injury? Therapeutic Advances in Drug Safety, 3, 53-57.
https://doi.org/10.1177/2042098611429985
[27] Panda, S.R., Jain, M., Jain, S., et al. (2018) Ef-fect of Orlistat versus Metformin in Various Aspects of Polycystic Ovarian Syndrome: A Systematic Review of Ran-domized Control Trials. The Journal of Obstetrics and Gynecology of India, 68, 336-343.
https://doi.org/10.1007/s13224-018-1140-6
[28] Apovian, C.M., Aronne, L., Rubino, D., et al. (2013) A Random-ized, Phase 3 Trial of Naltrexone SR/Bupropion SR on Weight and Obesity-Related Risk Factors (COR-II). Obesity (Silver Spring), 21, 935-943.
https://doi.org/10.1002/oby.20309
[29] Fujioka, K. and Braverman-Panza, J. (2016) Answers to Clinical Questions in the Primary Care Management of People with Obesity: Pharmacologic Management. The Journal of Family Practice, 65, S16-S23.
[30] Hollander, P., Gupta, A.K., Plodkowski, R., et al. (2013) Effects of Naltrexone Sus-tained-Release/Bupropion Sustained-Release Combination Therapy on Body Weight and Glycemic Parameters in Over-weight and Obese Patients with Type 2 Diabetes. Diabetes Care, 36, 4022-4029.
https://doi.org/10.2337/dc13-0234
[31] Melnikova, I. and Wages, D. (2006) Anti-Obesity Therapies. Nature Re-views Drug Discovery, 5, 369-370.
https://doi.org/10.1038/nrd2037
[32] Toplak, H., Hamann, A., Moore, R., et al. (2007) Efficacy and Safety of To-piramate in Combination with Metformin in the Treatment of Obese Subjects with Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Study. International Journal of Obesity (London), 31, 138-146.
https://doi.org/10.1038/sj.ijo.0803382
[33] Allison, D.B., Gadde, K.M., Garvey, W.T., et al. (2012) Con-trolled-Release Phentermine/Topiramate in Severely Obese Adults: A Randomized Controlled Trial (EQUIP). Obesity (Silver Spring), 20, 330-342.
https://doi.org/10.1038/oby.2011.330
[34] Gadde, K.M., Allison, D.B., Ryan, D.H., et al. (2011) Effects of Low-Dose, Controlled-Release, Phentermine plus Topiramate Combination on Weight and Associated Comorbidities in Overweight and Obese Adults (CONQUER): A Randomised, Placebo-Controlled, Phase 3 Trial. The Lancet, 377, 1341-1352.
https://doi.org/10.1016/S0140-6736(11)60205-5
[35] Garvey, W.T., Ryan, D.H., Look, M., et al. (2012) Two-Year Sustained Weight Loss and Metabolic Benefits with Controlled-Release Phentermine/Topiramate in Obese and Overweight Adults (SEQUEL): A Randomized, Placebo-Controlled, Phase 3 Extension Study. The American Journal of Clinical Nutrition, 95, 297-308.
https://doi.org/10.3945/ajcn.111.024927
[36] Marso, S.P., Daniels, G.H., Brown-Frandsen, K., et al. (2016) Li-raglutide and Cardiovascular Outcomes in Type 2 Diabetes. The New England Journal of Medicine, 375, 311-322.
https://doi.org/10.1056/NEJMoa1603827
[37] Müller, T.D., Finan, B., Bloom, S.R., et al. (2019) Glucagon-Like Peptide 1 (GLP-1). Molecular Metabolism, 30, 72-130.
https://doi.org/10.1016/j.molmet.2019.09.010
[38] O’neil, P.M., Birkenfeld, A.L., Mcgowan, B., et al. (2018) Efficacy and Safety of Semaglutide Compared with Liraglutide and Placebo for Weight Loss in Patients with Obesity: A Randomised, Double-Blind, Placebo and Active Controlled, Dose-Ranging, Phase 2 Trial. The Lancet, 392, 637-649.
https://doi.org/10.1016/S0140-6736(18)31773-2
[39] Kadouh, H., Chedid, V., Halawi, H., et al. (2020) GLP-1 Analog Modulates Appetite, Taste Preference, Gut Hormones, and Regional Body Fat Stores in Adults with Obesity. The Journal of Clinical Endocrinology & Metabolism, 105, 1552-1563.
https://doi.org/10.1210/clinem/dgz140
[40] Pi-Sunyer, X., Astrup, A., Fujioka, K., et al. (2015) A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. The New England Journal of Medicine, 373, 11-22.
https://doi.org/10.1056/NEJMoa1411892
[41] Hurren, K.M. and Berlie, H.D. (2011) Lorcaserin: An Investigation-al Serotonin 2C Agonist for Weight Loss. American Journal of Health-System Pharmacy, 68, 2029-2037.
https://doi.org/10.2146/ajhp100638
[42] Shukla, A.P., Kumar, R.B. and Aronne, L.J. (2015) Lorcaserin HCL for the Treatment of Obesity. Expert Opinion on Pharmacotherapy, 16, 2531-2538.
https://doi.org/10.1517/14656566.2015.1096345
[43] Lorcaserin, M. (2012) LiverTox: Clinical and Research In-formation on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases, Bethes-da.
[44] Sharretts, J., Galescu, O. and Gomatam, S., et al. (2020) Cancer Risk Associated with Lorcaserin—The FDA’s Review of the CAMELLIA-TIMI 61 Trial. The New England Journal of Medicine, 383, 1000-1002.
https://doi.org/10.1056/NEJMp2003873