幼儿元认知、执行功能和数感的关系研究进展与展望
Research Progress and Prospect of the Relationship between Children’s Metacognition, Executive Function and Number Sense
DOI: 10.12677/AP.2022.123093, PDF, HTML, XML, 下载: 288  浏览: 500 
作者: 宋思涵, 王璐瑶:重庆青年职业技术学院,学前教育学院,重庆
关键词: 幼儿执行功能元认知数感Children Executive Function Number Sense Metacognition
摘要: 执行功能影响幼儿的数学能力已得到许多研究的验证和支持,但由于测量工具不同,执行功能的具体维度对幼儿的影响还存在争议。由于幼儿的元认知还处于萌芽阶段,以往探讨元认知和数学能力关系的研究多以小学及以上的群体为研究对象,研究学龄前儿童元认知和数感关系的研究较少。同时,以往的研究忽略了个体早期数学能力和高级认知能力(即元认知和执行功能)的相互促进作用,“能力产生能力”假说表明,早期基础能力的进步,随着时间的推移,为获取更复杂的能力奠定了基础。幼儿执行功能、元认知和数学能力的关系在短时间内可能发生重大的变化,未来的研究可对3~6岁幼儿进行追踪研究,以更全面方式探究执行功能、元认知和数感之间的相互关系和方向,尤其是这些关系随着时间推移产生的变化。
Abstract: The influence of executive function on children’s mathematical ability has been verified and sup-ported by many studies, but due to different measurement tools, the impact of specific dimensions of executive function on young children is still controversial. As children’s metacognition is still in its infancy, previous studies on the relationship between metacognition and mathematical ability are mostly focused on primary school and above, while there are few studies on the relationship between metacognition and number sense in preschool children. At the same time, previous studies have ignored the interaction between individual early mathematical ability and advanced cognitive ability (that is, metacognitive and executive function). The “ability to produce ability” hypothesis shows that the progress of early basic ability, with the passage of time, laid the foundation for the acquisition of more complex abilities. The relationship among executive function, metacognition and mathematical ability of young children may change significantly in a short period of time. Future studies can follow up on children aged 3 to 6 years old to explore the relationship and direction among executive function, metacognition and number sense in a more comprehensive way, especially the changes of these relationships over time.
文章引用:宋思涵, 王璐瑶 (2022). 幼儿元认知、执行功能和数感的关系研究进展与展望. 心理学进展, 12(3), 784-791. https://doi.org/10.12677/AP.2022.123093

1. 引言

幼儿期是儿童数学思维的启蒙时期,幼儿期的数学活动可以帮助儿童进行思维训练,是建立抽象逻辑思维能力的开端。由于在幼儿正式教育之前更多依赖于日常数学经验,而非进入小学阶段后的正式数学教学(Ginsburg, Lee, & Boyd, 2008),有研究者认为幼儿的早期数学能力体现为对数的直觉感知,称为数感(Dehaene, 1997),也称为非正式数学能力。而另一些研究者则认为数感是一种加工后天言语或符号性数知识的能力,是涵盖了“低层次”的数感,“高层次”数感,也叫习得性数感,是后天获得的对数学概念的理解,是对数学原理和关系的深层次理解,需要儿童在数学运算和操作上具备高度的流畅性和灵活性(Berch, 2005)。本研究中的幼儿尚未接受正式的数学教育,但正处于幼小衔接阶段,在幼儿园教学中已经接触到关于数量的知识,对数量关系有一定的认识,学习了简单的数量运算策略(如手指数数等)。所以,本研究中的数感不仅包含数数、数知识、数量转换等正式数学能力,也包含对数量的自动关注、数估计等非正式的数学能力。学前教育阶段是儿童数学发展的形成时期,在这一阶段,学龄前儿童可以发展丰富的非正式数学知识(Clements & Sarama, 2007),随着年龄的增长,早期的非正式数学能力逐渐与正式数学能力关联起来。

近几十年来,幼儿早期数学能力的重要性得到越来越广泛的证实,早期数学能力能有效促进儿童正式入学后的学业成绩(Claessens & Engel, 2013),尤其是数学成绩(Geary, 2011)。因而,探寻幼儿数感发展的影响因素,以及幼儿数感可以对哪些能力有促进作用十分必要。越来越多的研究表明,幼儿数感作为一般认知能力和作为高级认知能力的执行功能和元认知能力存在相关,“能力产生能力”假说也为早期数学能力和后来的高级认知能力之间的关系提供了部分支持,即早期基础能力的进步,随着时间的推移,为获取更复杂的能力奠定了基础(Clements et al., 2016)。

儿童的高级认知能力与正式入学后学业成就有关,确定在幼儿发展过程中执行功能、元认知和数感关系的方向性,可以为教育工作者和相关工作人员在教学活动时对高级认知功能较差的儿童进行干预提供了更广阔的思路。

2. 幼儿执行功能和数学能力的双向关系

2.1. 幼儿执行功能对数学能力的影响

研究表明,执行功能和幼儿数感的发展密切相关,同时他们还发现幼儿时期的执行功能可以预测正式入学后数学成绩(Viterbori, Usai, Traverso, & De Franchis, 2015)。执行功能(executive function, EF)是指个体有意识并有效控制思维与行为的一系列高级认知能力,包括工作记忆、抑制控制和认知灵活性三方面的能力(Miyake & Friedman, 2012; Oh & Lewis, 2008; Schoemaker, Bunte, Espy, Deković, & Matthys, 2014)。首先,工作记忆(working memory)作为执行功能的重要成分,是指个体在头脑中保持信息并在心理上处理或操纵这些信息的能力(Diamond, 2013)。一项元分析发现,工作记忆与儿童数学成绩的相关性最强(Frisovan den Bos, van der Ven, Kroesbergen, & van Luit, 2013)。因为许多数学任务涉及同时进行信息处理和存储(例如解决数学应用题过程中记住中间的数字) (Raghubar, Barnes, & Hecht, 2010; Swanson & Jerman, 2006)。也有研究者认为数学能力较差的儿童的特殊困难是缺乏抑制和工作记忆差,这导致了切换、评估、处理特定任务时无法使用新策略(Bull & Scerif, 2001),没有工作记忆则无法完成推理(Diamond, 2013),而数学学习中需要运用大量的推理能力。第二,抑制控制(inhibitory control)是为了做最合适或最需要的事情而抵制去做另外一件事情的强烈倾向的能力(Diamond, Barnett, Thomas, & Munro, 2007)。一项追踪研究发现,控制了年龄、母亲教育背景和儿童语言词汇能力等因素后,抑制控制仍然能预测幼儿的数学能力(Espy et al., 2004)。最后,认知灵活性(cognitive flexibility)是个体的心理转换能力,从一个新的或不同的角度来考虑某件事,在不同的视角之间切换以适应变化的能力(Davidson, Amso, Anderson, & Diamond, 2006)。有研究者发现学前幼儿的认知灵活性可以预测数学能力(Bock et al., 2015),甚至认知灵活性可能是儿童数学成绩的唯一预测因素,因为它有助于儿童在中不同类型的数学任务之间转换(Braithwaite, Pyke, & Siegler, 2017)或从常用的策略转换到用新的策略(Bull & Scerif, 2001)。

2.2. 幼儿执行功能和数学能力的相互作用

正如执行功能对早期的学习表现的发展很重要一样,早期的学习表现可能对执行功能的发展也很重要(van der Ven et al., 2012)。幼儿能够注意、记住复杂的规则和坚持具有挑战性的任务的能力会使他们有更好的学习表现(Blair & Raver, 2014),但学习表现上更好的幼儿也更有可能保持注意力、记住规则,并抑制对复杂任务的不正确反应(Fuhs et al., 2014)。例如,参与复杂的数学活动,需要儿童识别多个集合的数量,将这些数量保留在记忆中,并进行比较(Schmitt et al., 2017)。一项追踪研究表明幼儿的执行功能与数学能力可以相互预测,他们发现6.5岁儿童的工作记忆和注意控制预测了未来一年内认数能力的增长,认数能力也预测了儿童一年内执行功能的增长(van der Ven et al., 2012)。幼儿从4.5岁到5.5岁之间的执行功能与其数学能力存在相互预测关系(Welsh, Nix, Blair, Bierman, & Nelson, 2010)。Fuhs等人(2014)也发现幼儿执行功能和数学成绩之间的相互预测关系,其结果表明从4.5岁到5.0岁时,幼儿执行功能和数学表现存在双向关系,但从5岁到6岁时只有执行功能可以预测幼儿的数学表现,幼儿的数学表现不再预测其执行功能。究其原因,有研究者认为是数学所涉及的抽象思维和逻辑思维可能会促进执行功能的发展(Clements, Sarama, & Germeroth, 2016)。以往的研究探讨了学前幼儿执行功能与早期数学能力之间的相互预测关系,但仍存在不确定结果。此外,幼儿执行功能和数学能力的关系在短时间内可能发生重大的变化,目前尚不清楚3~6岁幼儿数学能力和执行功能是否存在相互预测关系,如何存在,以及其关系如何变化。

3. 幼儿元认知和数学能力的关系

3.1. 元认知的概述

同样作为高级认知能力,元认知在幼儿阶段尚处于萌芽期,以往多数关于元认知的研究大多集中在小学及以上阶段的儿童。根据Flavell (1979)的定义,元认知是认知主体对自己的认知过程、结果或与之相关的活动的认识,即元认知结构包括元认知知识和元认知监控两部分。元认知知识是主体通过经验积累起来的,关于认知活动的一般性知识,是认知主体对影响认知活动的因素、各因素之间的相互作用以及作用的结果等方面的认识。元认知监控是指主体在进行认知活动中,将自己正在进行的认知活动作为意识对象,不断地对其进行积极而自觉的监视、控制和调节的过程,元认知知识通过元认知监控起作用。近年来,越来越多的研究者也在3岁至7岁的幼儿身上观察到元认知的迅速变化(Bryce, Whitebread, & Szűcs, 2015; Roebers, Cimeli, Röthlisberger, & Neuenschwander, 2012)。

3.2. 元认知和数学能力的关系

一项关于儿童元认知监控与数学能力关系的横断研究中发现了在5~8岁幼儿身上二者之间的正相关关系,幼儿的在数学领域元认知能力预测了他们在学校的数学成绩,并表明元认知是儿童的一种领域独立的认知能力(Vo et al., 2014)。Bryce等人(2015)探讨了5岁和7岁儿童元认知、执行功能和学业成就的关系,发现5岁儿童的执行功能与元认知技能的相关性高于7岁儿童,5岁儿童中一般元认知能力、工作记忆和短时记忆与阅读和数学能力均显著相关,而7岁儿童中只有一般元认知能力与阅读和数学能力显著相关,元认知能力是两个年龄组学业成绩的最重要预测因素。这充分说明这两种能力并不相同,幼儿元认知、执行功能和早期数学能力之间的具体关系可能随着年龄的变化而变化。

从另一个角度来讲,越来越多的证据表明元认知技能可以通过内隐和外显的教学来提高(Dignath, Buettner, & Langfeldt, 2008)。在教育领域,研究表明家长和教师以及儿童游戏体验在支持幼儿早期元认知发展中的作用(e.g., Brinck & Liljenfors, 2013; Ornstein, Grammer, & Coffman, 2010)。Rinne和Mazzocco (2014)发现,元认知监控能力更好的儿童在后来在心算任务中表现更好,他们推测元认知与数学表现之间可能存在相互影响关系。从时间序列上来说,学前幼儿生活经验或教学活动中获得的早期数学能力在前,元认知能力的萌芽及其发展在后。因此,我们推测幼儿早期数学能力也可能会正向预测其随后的元认知能力的发展。总的来说,探讨幼儿元认知的文献相对较少,元认知能力是在几岁开始发展仍存有争议,目前尚不清楚是哪些因素影响了元认知能力的发展,以及在不同的年龄阶段元认知的具体成分对幼儿数学能力的作用。

4. 幼儿元认知和执行功能对数感的联合作用

4.1. 元认知和执行功能的关系

同时,一些神经影像学研究表明,在典型的执行功能或特定的元认知任务中,大脑的激活在前额叶皮层尤为明显(Kao, Davis, & Gabrieli, 2005)。在有神经疾病和额叶病变的样本中,执行功能和元认知都可能受到损害(Diamond, 2010; Pannu & Kaszniak, 2005)。元认知和执行功能都是与行为调节相关的高级认知过程,它们共享理论特征(例如,控制加工),经历相似的发育轨迹(Roebers & Feurer, 2016)。因此,除执行功能对数感的影响外,元认知也可能会影响到幼儿数感的发展。而以往的研究中,大多注重探究执行功能对数感的影响,较少关注元认知对数感的作用。

鉴于元认知和执行功能在幼儿期的突出意义,以及预测学习、发育和学术结果的强烈倾向,我们关注二者对幼儿数学能力的联合作用。元认知和执行功能都在幼儿期表现出快速增长,首先,执行功能虽然从出生开始已经持续成熟了几年,但在执行功能中观察到的最快速的变化是发生在4到6岁之间(Huizinga, Dolan, & van der Molen, 2006; Jurado & Rosselli, 2007)。同样,研究者也在3岁至7岁之间观察到元认知的迅速变化(Bryce, Whitebread, & Szűcs, 2015; Roebers et al., 2012)。同时,一些神经影像学研究表明,在典型的执行功能或特定的元认知任务中,大脑的激活在前额叶皮层尤为明显(Kao, Davis, & Gabrieli, 2005)。在有神经疾病和额叶病变的样本中,执行功能和元认知都可能受到损害(Diamond, 2010; Pannu & Kaszniak, 2005)。元认知和执行功能都是与行为调节相关的高级认知过程,它们共享理论特征(例如,控制加工),经历相似的发育轨迹(Roebers & Feurer, 2016)。元认知在执行功能过程中起关键作用,因为主观体验(即元认知)允许行为自上而下的控制(Desender, Van, & Van, 2014)。反过来,也有研究者认为执行功能可能是元认知和相关的结构自我调节的前因(Bryce et al., 2015; Fernandez-Duque, Baird, & Posner, 2000; Garner, 2009)。关于执行功能对元认知的影响的研究主要集中在工作记忆方面,无论是在儿童(John & Thiede, 2004),还是成年人中(Dunlosky & Bjork, 2008),工作记忆越好,元认知能力越好。Souchay和Isingrini (2004)甚至认为在老年人身上观察到的元认知能力的下降可以解释为执行功能的下降。因此,元认知和执行功能都有平行的发展轨迹。Roebers等人(2012)在纵向分析中发现儿童7岁时的执行功能可以预测一年后的元认知能力。究其原因,早期元认知能力的出现使幼儿能够越来越多地觉察到到他们运用执行功能处理信息的感知,以及反思他们执行功能的运用,从而对他们的学习采取越来越高的控制水平。这使幼儿能够对他们所从事的信息和任务进行更主动的管理。幼儿监控他们自己的心理过程,并积累更多关于他们的元认知知识。反过来,信息处理的每个方面都变得更加有效,包括儿童从越来越有效的策略中进行选择的能力。随着主动性在幼儿早期的增加,在学习环境中,幼儿的自我调节能力也在不断地发展(Marulis, Baker, & Whitebread, 2019)。

4.2. 元认知、执行功能和数学能力的循环作用

目前,大量研究者关注到执行功能对幼儿数学表现的影响,但少有研究者在同一项研究中探讨元认知发展和执行功能对数学能力的相对贡献(Pennequin, Sorel, & Mainguy, 2010)。Freeman, Karayanidis和Chalmers (2017)发现四年级儿童能够对他们的工作记忆表现进行元认知监控,这种监控与儿童的学术成就相关。对工作记忆能力的元认知监控是对儿童学业成就的预测是一项重要的发现,因为我们通常认为工作记忆是执行功能的一部分,注意力或规划等其他组成部分也可能发挥着作用,所以元认知监控能力和数学能力可能与第三变量(即执行功能)相关。Bryce等人(2015)探讨了5岁和7岁儿童元认知、执行功能和学业成就的关系,发现5岁儿童的执行功能与元认知技能的相关性高于7岁儿童,5岁儿童中一般元认知能力、工作记忆和短时记忆与阅读和数学能力均显著相关,而7岁儿童中只有一般元认知能力与阅读和数学能力显著相关,元认知能力是两个年龄组学业成绩的最重要预测因素。这充分说明这两种能力并不相同,元认知能力与执行功能之间的具体关系可能随着年龄的变化而变化。虽然执行功能和任务上的元认知监控都有助于数学表现,但基于任务的元认知监控是更重要的。这可能是由于执行功能任务捕捉个体差异的敏感性较低,因为这些任务在被试之间的变异性较低,因此它们在研究个体差异方面的有用性可能有限。此外,在幼儿进行数学相关的认知过程是可能存在重叠,但根据任务不同,各个认知过程的需求强度也存在差异(Bellon et al., 2019)。

尽管有部分研究者开始关注学龄前儿童的高级认知能力与一般认知能力的关系,但是目前没有研究系统性的探究3~6岁幼儿元认知、执行功能和数感中具体哪些成分在相互促进中起作用,以及三者的关系随着时间推移的变化。

5. 研究展望

影响幼儿数感发展的因素众多,即使众多因素在幼儿数感发展中发挥重要作用,高级认知因素和幼儿数感发展的关系仍然不容小觑。早有研究者注意到元认知和执行功能对幼儿早期数学能力的重要作用,但由于对元认知和执行功能的界定不统一或测量工具不同,当前的研究对幼儿元认知和执行功能中具体哪些维度与幼儿数学能力相关还存在不一致结果。

此外,越来越多的研究者注意到幼儿认知发展和早期数学能力发展存在着相互预测的关系。但由于元认知发展在幼儿阶段尚处于萌芽期,以往多数关于元认知对数学能力的研究大多集中在小学及以上阶段的儿童。学龄前期是儿童执行功能、数学能力发展的重要阶段,是幼儿元认知能力的萌芽阶段。但是,总体看来现有研究中揭示执行功能、元认知以及数感三者关系的研究相对比较少,且只探讨了高级认知能力对一般认知能力的作用,较少探讨一般认知能力对高级认知能力的促进作用。仍不清楚执行功能和元认知的具体维度对数学能力的贡献,以及幼儿的数学能力是否对元认知和执行功能有促进作用。如果有,幼儿数感促进了元认知和执行功能中的哪些具体维度的进步。

未来的研究可通过对3~6岁的幼儿进行追踪研究,采用或开发适合3~6岁幼儿的任务,更全面探讨执行功能(包括工作记忆,抑制控制和认知灵活性)、元认知(元认知知识,一般任务元认知监控,特殊任务元认知监控)和幼儿数感之间是否存在双向关系,具体在哪些年龄阶段存在双向关系,以及这些关系随时间推移产生的变化。

参考文献

[1] Bellon, E., Fias, W., & De Smedt, B. (2019). More than Number Sense: The Additional Role of Executive Functions and Metacognition in Arithmetic. Journal of Experimental Child Psychology, 182, 38-60.
https://doi.org/10.1016/j.jecp.2019.01.012
[2] Berch, D. B. (2005). Making Sense of Number Sense: Implications for Children with Mathematical Disabilities. Journal of Learning Disabilities, 38, 333-339.
https://doi.org/10.1177/00222194050380040901
[3] Blair, C., & Raver, C. C. (2014). Closing the Achievement Gap through Modification of Neurocognitive and Neuroendocrine Function: Results from a Cluster Randomized Con-trolled Trial of an Innovative Approach to the Education of Children in Kindergarten. PLoS ONE, 9, e112393.
https://doi.org/10.1371/journal.pone.0112393
[4] Bock, A., Cartwright, K. B., Gonzalez, C., O’Brien, S., Robinson, M. F., Schmerold, K., Pasnak, R. et al. (2015). The Role of Cognitive Flexibility in Pattern Understanding. Journal of Education & Human Development, 4, 19-25.
https://doi.org/10.15640/jehd.v4n1a3
[5] Braithwaite, D. W., Pyke, A. A., & Siegler, R. S. (2017). A Computational Model of Fraction Arithmetic. Psychological Review, 124, 603-625.
https://doi.org/10.1037/rev0000072
[6] Brinck, I., & Liljenfors, R. (2013). The Developmental Origin of Metacognition. Infant and Child Development, 22, 85-101.
https://doi.org/10.1002/icd.1749
[7] Bryce, D., Whitebread, D., & Szűcs, D. (2015). The Relationships among Executive Functions, Metacognitive Skills and Educational Achievement in 5 and 7 Year-Old Children. Metacognition & Learning, 10, 181-198.
https://doi.org/10.1007/s11409-014-9120-4
[8] Bull, R., & Scerif, G. (2001). Executive Functioning as a Predictor of Children’s Mathematics Ability: Inhibition, Switching, and Working Memory. Developmental Neuropsychology, 19, 273-293.
https://doi.org/10.1207/S15326942DN1903_3
[9] Claessens, A., & Engel, M. (2013). How Important Is Where You Start? Early Mathematics Knowledge and Later School Success. Teachers College Record, 115, 1-29.
https://doi.org/10.1177/016146811311500603
[10] Clements, D. H., & Sarama, J. (2007). Effects of a Preschool Mathematics Curriculum: Summative Research on the Building Blocks Project. Journal for Research in Mathematics Education, 38, 136-163.
https://doi.org/10.2307/748360
[11] Clements, D. H., Sarama, J., & Germeroth, C. (2016). Learning Executive Function and Early Mathematics: Directions of Causal Relations. Early Childhood Research Quarterly, 36, 79-90.
https://doi.org/10.1016/j.ecresq.2015.12.009
[12] Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of Cognitive Control and Executive Functions from 4 to 13 Years: Evidence from Manipulations of Memory, Inhibition, and Task Switching. Neuropsychologia, 44, 2037-2078.
https://doi.org/10.1016/j.neuropsychologia.2006.02.006
[13] Dehaene, S. (1997). The Number Sense: How the Mind Creates Mathematics. Oxford University Press.
[14] Desender, K., Van, O. F., & Van, D. B. E. (2014). Feeling the Conflict: The Crucial Role of Conflict Experience in Adaptation. Psychological Science, 25, 675-683.
https://doi.org/10.1177/0956797613511468
[15] Diamond, A. (2010). Close Interrelation of Motor Development and Cognitive Development and of the Cerebellum and Prefrontal Cortex. Child Development, 71, 44-56.
https://doi.org/10.1111/1467-8624.00117
[16] Diamond, A. (2013). Executive Functions. Annual Review of Psy-chology, 64, 135-168.
https://doi.org/10.1146/annurev-psych-113011-143750
[17] Diamond, A., Barnett, W. S., Thomas, J., & Munro, S. (2007). Preschool Program Improves Cognitive Control. Science, 318, 1387-1388.
https://doi.org/10.1126/science.1151148
[18] Dignath, C., Buettner, G., & Langfeldt, H. P. (2008). How Can Primary School Students Learn Self-Regulated Learning Strategies Most Effectively? A Meta-Analysis on Self-Regulation Training Programmes. Educational Research Review, 3, 101-129.
https://doi.org/10.1016/j.edurev.2008.02.003
[19] Dunlosky, J., & Bjork, R. A. (2008). The Integrated Nature of Metamemory and Memory. In Handbook of Metamemory and Memory (pp. 9-28). Routledge.
[20] Espy, K. A., McDiarmid, M. M., Cwik, M. F., Stalets, M. M., Hamby, A., & Senn, T. E. (2004). The Contribution of Executive Functions to Emergent Mathematic Skills in Preschool Children. Developmental Neuropsychology, 26, 465-486.
https://doi.org/10.1207/s15326942dn2601_6
[21] Fernandez-Duque, D., Baird, J. A., & Posner, M. I. (2000). Executive Attention and Metacognitive Regulation. Consciousness and Cognition, 9, 288-307.
https://doi.org/10.1006/ccog.2000.0447
[22] Flavell, J. H. (1979). Metacognition and Cognitive Monitoring: A New Area of Cognitive-Developmental Inquiry. American Psychologist, 34, 906-911.
https://doi.org/10.1037/0003-066X.34.10.906
[23] Freeman, E. E., Karayanidis, F., & Chalmers, K. A. (2017). Metacognitive Monitoring of Working Memory Performance and Its Relationship to Academic Achievement in Grade 4 Children. Learning and Individual Differences, 57, 58-64.
https://doi.org/10.1016/j.lindif.2017.06.003
[24] Frisovan den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). Working Memory and Mathematics in Primary School Children: A Meta Analysis. Educational Research Review, 10, 29-44.
https://doi.org/10.1016/j.edurev.2013.05.003
[25] Fuhs, M. W., Nesbitt, K. T., Farran, D. C., & Dong, N. (2014). Longitudinal Associations between Executive Functioning and Academic Skills across Content Areas. Developmental Psychology, 50, 1698-1709.
https://doi.org/10.1037/a0036633
[26] Garner, J. K. (2009). Conceptualizing the Relations between Executive Functions and Self-Regulated Learning. The Journal of Psychology, 143, 405-426.
https://doi.org/10.3200/JRLP.143.4.405-426
[27] Geary, D. C. (2011). Cognitive Predictors of Achievement Growth in Mathematics: A 5-Year Longitudinal Study. Developmental Psychology, 47, 1539-1552.
https://doi.org/10.1037/a0025510
[28] Ginsburg, H. P., Lee, J. S., & Boyd, J. S. (2008). Mathematics Education for Young Children: What It Is and How to Promote It. Social Policy Report, 22, 1-24.
https://doi.org/10.1002/j.2379-3988.2008.tb00054.x
[29] Huizinga, M., Dolan, C. V., & van der Molen, M. W. (2006). Age-Related Change in Executive Function: Developmental Trends and a Latent Variable Analysis. Neuropsy-chologia, 44, 2017-2036.
https://doi.org/10.1016/j.neuropsychologia.2006.01.010
[30] John, D., & Thiede, K. W. (2004). Causes and Constraints of the Shift-to-Easier-Materials Effect in the Control of Study. Memory & Cognition, 32, 779-788.
https://doi.org/10.3758/BF03195868
[31] Jurado, M. B., & Rosselli, M. (2007). The Elusive Nature of Executive Functions: A Review of Our Current Understanding. Neuropsychology Review, 17, 213-233.
https://doi.org/10.1007/s11065-007-9040-z
[32] Kao, Y. C., Davis E. S., & Gabrieli, J. D. (2005). Neural Correlates of Actual and Predicted Memory Formation. Nature Neuroscience, 8, 1776-1783.
https://doi.org/10.1038/nn1595
[33] Marulis, L. M., Baker, S. T., & Whitebread, D. (2019). Integrating Metacognition and Executive Function to Enhance Young Children’s Perception of and Agency in Their Learning. Early Childhood Research Quarterly, 50, 46-54.
https://doi.org/10.1016/j.ecresq.2018.12.017
[34] Missall, K. N., Mercer, S. H., Martínez, R. S., & Casebeer, D. (2012). Concurrent and Longitudinal Patterns and Trends in Performance on Early Numeracy Curriculum-Based Measures in Kindergarten through Third Grade. Assessment for Effective Intervention, 37, 95-106.
https://doi.org/10.1177/1534508411430322
[35] Miyake, A., & Friedman, N. P. (2012). The Nature and Organization of Individual Differences in Executive Functions: Four General Conclusions. Current Directions in Psychological Science, 21, 8-14.
https://doi.org/10.1177/0963721411429458
[36] Oh, S., & Lewis, C. (2008). Korean Preschoolers’ Advanced Inhibitory Control and Its Relation to Other Executive Skills and Mental State Understanding. Child Development, 79, 80-99.
https://doi.org/10.1111/j.1467-8624.2007.01112.x
[37] Ornstein, P. A., Grammer, J. K., & Coffman, J. L. (2010). Teachers’ “Mnemonic Style” and the Development of Skilled Memory. In H. S. Waters, & W. Schneider (Eds.), Metacognition, Strategy Use & Instruction (pp. 23-53). Guilford Press.
[38] Pannu, J. K., & Kaszniak, A. W. (2005). Metamemory Experiments in Neurological Populations: A Review. Neuropsychology Review, 15, 105-130.
https://doi.org/10.1007/s11065-005-7091-6
[39] Pennequin, V., Sorel, O., & Mainguy, M. (2010). Metacognition, Executive Functions and Aging: The Effect of Training in the Use of Metacognitive Skills to Solve Mathematical Word Problems. Journal of Adult Development, 17, 168-176.
https://doi.org/10.1007/s10804-010-9098-3
[40] Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working Memory and Mathematics: A Review of Developmental, Individual Differences and Cognitive Approaches. Learning and Individual Differences, 20, 110-122.
https://doi.org/10.1016/j.lindif.2009.10.005
[41] Rinne, L. F., & Mazzocco, M. M. M. (2014). Knowing Right from Wrong in Mental Arithmetic Judgments: Calibration of Confidence Predicts the Development of Accuracy. PLoS ONE, 9, e98663.
https://doi.org/10.1371/journal.pone.0098663
[42] Roebers, C. M., & Feurer, E. (2016). Linking Executive Functions and Procedural Metacognition. Child Development Perspectives, 10, 39-44.
https://doi.org/10.1111/cdep.12159
[43] Roebers, C. M., Cimeli, P., Röthlisberger, M., & Neuenschwander, R. (2012). Executive Functioning, Metacognition, and Self-Perceived Competence in Elementary School Children: An Explorative Study on Their Interrelations and Their Role for School Achievement. Metacognition and Learning, 7, 151-173.
https://doi.org/10.1007/s11409-012-9089-9
[44] Schmitt, S. A., Geldhof, G. J., Purpura, D. J., Duncan, R., & McClelland, M. M. (2017). Examining the Relations between Executive Function, Math, and Literacy during the Transition to Kindergarten: A Multi-Analytic Approach. Journal of Educational Psychology, 109, 1120-1140.
https://doi.org/10.1037/edu0000193
[45] Schoemaker, K., Bunte, T., Espy, K. A., Deković, M., & Matthys, W. (2014). Executive Functions in Preschool Children with ADHD and DBD: An 18-Month Longitudinal Study. Developmental Neuropsychology, 39, 302-315.
https://doi.org/10.1080/87565641.2014.911875
[46] Souchay, C., & Isingrini, M. (2004). Age Related Differences in Metacognitive Control: Role of Executive Functioning. Brain and Cognition, 56, 89-99.
https://doi.org/10.1016/j.bandc.2004.06.002
[47] Swanson, H. L., & Jerman, O. (2006). Math Disabilities: A Selective Meta-Analysis of the Literature. Review of Educational Research, 76, 249-274.
https://doi.org/10.3102/00346543076002249
[48] van der Ven, S. H., Kroesbergen, E. H., Boom, J., & Leseman, P. P. (2012). The Development of Executive Functions and Early Mathematics: A Dynamic Relationship. British Journal of Educational Psychology, 82, 100-119.
https://doi.org/10.1111/j.2044-8279.2011.02035.x
[49] Viterbori, P., Usai, M. C., Traverso, L., & De Franchis, V. (2015). How Preschool Executive Functioning Predicts Several Aspects of Math Achievement in Grades 1 and 3: A Longitudinal Study. Journal of Experimental Child Psychology, 140, 38-55.
https://doi.org/10.1016/j.jecp.2015.06.014
[50] Vo, V. A., Li, R., Kornell, N., Pouget, A., & Cantlon, J. F. (2014). Young Children Bet on Their Numerical Skills: Metacognition in the Numerical Domain. Psychological Science, 25, 1712-1721.
https://doi.org/10.1177/0956797614538458
[51] Welsh, J. A., Nix, R. L., Blair, C., Bierman, K. L., & Nelson, K. E. (2010). The Development of Cognitive Skills and Gains in Academic School Readiness for Children from Low-Income Families. Journal of Educational Psychology, 102, 43-53.
https://doi.org/10.1037/a0016738