γ-谷氨酰转肽酶促氧化作用在肿瘤进展和顺铂耐药中的研究进展
Review of Research on Gamma-Glutamyl Transferase Pro-Oxidant Effects in Tumor Progression and Cisplatin Resistance
DOI: 10.12677/WJCR.2022.122005, PDF, HTML, XML, 下载: 315  浏览: 1,038  科研立项经费支持
作者: 沐 宇, 赵苗苗, 石祥奎, 黄 亭*:徐州市妇幼保健院药事科,江苏 徐州;彭 瑞, 梁兴忠:徐州市妇幼保健院乳腺科,江苏 徐州;王 威:徐州市妇幼保健院手术室,江苏 徐州;吴昕雨:徐州市妇幼保健院检验科,江苏 徐州
关键词: γ-谷氨酰转移酶肿瘤氧化还原顺铂耐药Gamma-Glutamyl Transferase Tumour Redox Cisplatin Drug Resistance
摘要: γ-谷氨酰转移酶(Gamma-glutamyl transferase, GGT)是参与谷胱甘肽代谢的关键酶,在恶性肿瘤中通常过表达。GGT在肿瘤细胞中的诱导、表达等过程十分复杂。早期的研究主要集中在GGT的细胞抗氧化防御功能,近年来GGT的促氧化活性逐渐被发现。GGT的促氧化剂可以调节细胞功能,如增殖/凋亡平衡,在肿瘤进展和耐药性方面具有明显而重要的意义。本文对近期关于γ-谷氨酰转移酶在肿瘤进展和顺铂耐药中的研究进行综述。
Abstract: Gamma-glutamyl transferase (GGT) is a key enzyme involved in glutathione metabolism, whose expression is often significantly increased in human malignancies. The induction and expression of GGT in tumor cells are very complex. Early studies on GGT focused on antioxidant defense function. In recent years, the pro oxidative activity of GGT has been gradually found which can regulate cell function such as proliferative/apoptotic balance with great significance in tumor progression and drug resistance. This paper reviews the recent research on Gamma-glutamyl transferase in tumor progression and cisplatin resistance.
文章引用:沐宇, 彭瑞, 梁兴忠, 王威, 吴昕雨, 赵苗苗, 石祥奎, 黄亭. γ-谷氨酰转肽酶促氧化作用在肿瘤进展和顺铂耐药中的研究进展[J]. 世界肿瘤研究, 2022, 12(2): 33-41. https://doi.org/10.12677/WJCR.2022.122005

1. 引言

γ-谷氨酰转移酶(Gamma-glutamyl transferase, GGT)是一种结合于细胞膜上的酶,人类体内编码GGT的基因位于22q11 [1]。GGT能够将细胞外的谷胱甘肽(glutathione, GSH)水解为谷氨酸、半胱氨酸和甘氨酸,使细胞回收利用氨基酸,对于维持机体内GSH和半胱氨酸的稳态至关重要 [2]。GGT/GSH通常作为细胞抗氧化防御系统的重要组成部分 [3]。然而研究发现,GSH/GGT同样具有促氧化作用,能够调节细胞的增殖和凋亡 [4]。正常组织中GGT的表达量差异很大,尤其在具有分泌功能的细胞表面,如包括胆小管、近端肾小管的管腔表面细胞,以及神经系统毛细血管内皮细胞等 [5]。相关研究显示,肿瘤细胞GGT常常表达异常,GGT在化疗药物耐药机制中同样发挥重要作用 [6] [7]。目前已有研究以肿瘤细胞GGT作为靶点,探索抗肿瘤前体的可能性 [8]。本文对GGT促氧化作用在肿瘤进展和顺铂耐药相关研究进行综述。

2. 肿瘤细胞中GGT的诱导表达途径

众多动物实验发现,在化学致癌物的作用下机体会出现GGT异常高表达,由此有学者提出了GGT可以作为细胞癌变的早期标志物的假说 [5] [6]。最近一项研究证实处于增殖状态的肝癌细胞,其GGT表达异常增加 [9]。然而,致癌物诱导的GGT表达增加的潜在机制仍不明确。有研究表明,氧化应激环境能够激活细胞外信号调节激酶(ERK)和p38丝裂原活化蛋白激酶(MAPK)途径或亲电反应元件/核因子红系2相关因子2 (EpRE/NFE2L2)信号传导,促使多种细胞的GGT表达上调 [10] [11] [12] [13]。最近有学者提出了ras依赖的转导途径也参与了GGT的上调,在γ射线和氧化应激处理的结肠癌细胞中,GGT高表达和Ras-MAPK通路的激活之间存在关联 [14]。此外,活性氧(ROS)也参与了细胞癌变的过程。随着研究的深入,学者逐渐发现GGT mRNA也可以被多种细胞因子诱导,包括肿瘤坏死因子α (TNF-α)、干扰素(IFN)-α和干扰素(IFN)-β [15] [16]。有证据表明TNF-α通过NF-κB依赖性信号传导、特异性蛋白1 (Sp1)转录因子和RNA聚合酶II募集于GGT启动子,从而诱导GGT的表达 [17]。由此可知GGT和炎症反应具有联系,可能作为一种特定的炎症细胞因子发挥作用。

3. 肿瘤细胞中GGT的表达特点及功能

众多研究发现人类肿瘤组织和正常组织中的GGT分布和浓度存在差异,如卵巢癌、结肠癌、肝癌和星形细胞胶质瘤等中均发现GGT水平异常升高 [18] [19] [20] [21]。Hanigan等人 [22] 开展的一项包括451例人类肿瘤患者的大型研究发现,来源于正常情况下GGT阳性的组织的肿瘤GGT表达仍然呈阳性,尽管肺癌和卵巢癌来源于正常情况下GGT阴性的上皮组织,但肿瘤组织的GGT普遍呈阳性。在黑色素瘤细胞的体外/体内研究中,均发现GGT的活性随着肿瘤侵袭程度而增加 [23]。在乳腺癌中发现治疗前GGT高水平与不良预后显著相关 [24]。肾癌患者术前GGT水平与中位总生存期呈负相关 [25]。在泌尿系统肿瘤(包括肾细胞癌、前列腺癌和尿路上皮癌)GGT升高不良预后的预测因素 [26]。也有研究得出不同结论,如在结直肠癌患者中未发现GGT水平与其肿瘤指标之间存在相关性 [27]。这可能与肿瘤细胞的高度变异性,以及环境、药物、饮食等因素有关,这些因素可能改变肿瘤的表型,影响GGT的表达。

一些研究已经探讨了GGT活性与肿瘤的关系,特别是GGT表达增加在细胞癌变中起到积极作用 [5]。GGT能够促进细胞内GSH的生成,具有抗氧化作用,研究发现表达GGT的细胞系对促进氧化应激的药物的产生耐药,提示GGT是细胞防御系统的组成部分。另一方面,最近的一些发现表明,在特定条件下,GGT对GSH的代谢可以发挥促氧化作用,对氧化还原的过程具有调节作用 [6]。GSH在细胞内合成,并通过质膜转运蛋白转运至细胞膜外。GGT参与细胞外GSH的代谢,促进细胞中谷氨酸和必需的半胱氨酸的恢复 [28] [29]。体外、体内实验均表明,GGT过表达的细胞能够更有效地利用细胞外的GSH作为半胱氨酸的来源 [30] [31],从而在生理情况和限制半胱氨酸浓度的情况下具有选择性生长优势 [32]。在GGT阳性的宫颈癌细胞系中,当短时间(2 h)抑制GGT活性后,细胞内半胱氨酸含量随之降低 [33]。因此,GGT促进肿瘤生长的作用是双重的,它能够作为必需氨基酸的来源,用于蛋白质合成和维持细胞内GSH水平。

4. GGT促进氧化应激的作用

近年来,研究证明GGT可参与机体氧化应激反应,增加氧自由基的产生 [34]。半胱氨酸-甘氨酸的巯基由于pKa较低,生理pH下较GSH解离更快,能够更有效的减少细胞外金属阳离子的转运,特别是三价铁和二价铜。GSH对铁的还原作用可能受到谷氨酸残基α-羧基的螯合作用的限制,进而影响半胱氨酸巯基的空间和氧化还原相互作用 [35]。在GGT的催化下谷氨酸解离,半胱氨酸的pKa降低,可以自由地与铁相互作用,铁被还原后能够产生ROS(超氧阴离子,过氧化氢)。为了验证GGT的促氧化作用,研究者首先在化学致癌物诱导的大鼠肝脏肿瘤病灶中进行实验,用含GSH和铁的培养基中孵育新鲜肝脏病灶组织,发现在富含GGT的结节中出现脂质过氧化反应。当使用不含GSH或铁的培养基,或加入自由基清除剂以及抑制GGT活性后,脂质过氧化反应受到抑制 [36]。随后的研究表明,含有GGT和金属离子的培养基对于鼠伤寒沙门氏菌菌株具有诱导突变的作用 [37]。这种GGT诱导的氧化损伤可以促进细胞癌变或促进肿瘤细胞进一步恶化 [36]。最近研究显示,在GGT转染的黑色素瘤细胞中,GGT的促氧化活性可损伤DNA损伤,从而可能导致基因组不稳定,增加癌细胞的突变风险 [38]。金属离子的氧化还原反应与活性氧的产生是所述现象的关键步骤。已经证实铁转运蛋白、转铁蛋白和铁蛋白,以及铜结合铜蓝蛋白,可以作为反应的金属离子的来源 [39]。GGT可促进转铁蛋白中游离铁的释放,间接促进氧化应激损伤。

迄今为止的研究表明,GGT产生的促氧化反应可以作为癌细胞内源性ROS的额外来源,由此可能导致“持续氧化应激”状态,增加基因组不稳定性 [40]。这种作用可以通过作用于对细胞内受氧化还原影响敏感的靶标进行调节 [41]。半胱氨酸的巯基在这种调节中起主要作用,其被不同的氧化还原修饰后能表现出不同的功能,如参与细胞增殖、凋亡、粘附,影响基因表达等,而这些功能在癌症的进展中尤为重要。有文献表明,GGT的活性可以促进细胞表面的巯基的氧化,产生过氧化氢和二硫化物 [42]。通过产生过氧化氢,在质膜上自由扩散,GGT/GSH依赖性促氧化剂反应也可能涉及关键的细胞内靶标。研究显示,GGT依赖的促氧化剂可以诱导NF-κB和AP-1与DNA的结合,并调节蛋白激酶/磷酸酶活性之间的平衡 [42] [43]。

众所周知,由于与生长因子受体、蛋白激酶和转录因子的相互作用,氧化还原反应能够调节增殖/凋亡信号转导 [44]。在卵巢癌的研究中发现,GGT/GSH依赖的促氧化反应发挥抗增殖作用 [45]。而在U937淋巴瘤细胞中则出现了抗凋亡信号 [46]。此外,GGT介导的促氧化反应的调节作用还可通过诱导细胞内产生抗氧化剂,促进表达GGT的癌细胞出现耐药。例如,与GGT低表达的细胞相比,GGT高表达的黑色素瘤细胞过氧化氢酶的表达高两倍 [47]。GGT/GSH依赖的促氧化反应也会通过促进抗坏血酸的细胞外氧化和对其氧化产物脱氢抗坏血酸的吸收,来增加细胞内抗坏血酸的水平 [48]。

5. GGT和顺铂耐药之间的关系

研究发现GGT过表达的细胞对过氧化氢和化疗药物如阿霉素、顺铂具有更高的耐药性,细胞对产生耐药的基础是细胞内存在大量的GSH [49] [50] [51]。在黑色素瘤细胞中,当GSH被消耗和GGT被抑制后,显著增加了氧化应激环境对细胞的毒性 [52]。同时,也发现氧化应激能够能诱导GGT的表达,这可能是由氧化应激本身诱导细胞产生的一种“适应性保护” [50] [51]。因此,GGT诱导表达的特点能够使正常细胞更好地应对氧化剂的损伤 [6]。然而,关于GSH和GGT在保护细胞免受损伤的假说,有实验得出了相反的结论。首先,在体外实验以及在裸鼠肿瘤模型中,在转染了GGTcDNA的不同癌细胞系中发现,GSH的表达减少而非增加 [32] [53]。在顺铂耐药的黑色素瘤和A2780卵巢癌细胞系中,甚至发现GGT活性与细胞内GSH水平呈反比关系 [54] [55]。在人类生殖细胞肿瘤患者中,也没有证据表明肿瘤GGT阳性者对顺铂的耐药性增加 [56]。一些证据表明,GGT的其他活性能可能解释这种结果的不一致性,这些活性可能将铂类药物阻滞于细胞外,但金属离子在细胞外又会引起氧化应激反应 [7]。

已经有文献记载,半胱氨酸和其他含有半胱氨酸的短肽,如半胱氨酸甘氨酸和GSH,能够与顺铂形成复合物顺式二氨基二氯铂,这种复合物在难以跨膜转运 [57] [58]。在接受奥沙利铂治疗的患者的血浆中也发现了类似的复合物 [59]。研究表明顺铂和半胱氨酸–甘氨酸形成复合物的速度是顺铂和GSH形成复合物速度的十倍,在经过顺铂处理的GGT过表达的HeLa细胞系中,在培养基中(即细胞膜外)检测到顺铂和半胱氨酸-甘氨酸形成的复合物 [60]。究其原因,半胱氨酸–甘氨酸的pKa显著低于GSH (分别为6.4和8.6),这导致其在生理pH条件下解离速度更快,与顺铂的结合速度更快。GGT能将与顺铂亲和力较差的GSH转化为半胱氨酸–甘氨酸,促进胞外铂复合物的形成 [60]。这种细胞外相互作用能够减少顺铂进入胞内的量,DNA-铂复合物生产减少,顺铂的细胞毒作用降低 [32] [58]。因此,GGT高表达对顺铂耐药的机制是由于顺铂以复合物的形被阻滞在细胞外。然而,GGT介导的顺铂耐药可能取决于特定的生物学背景,其中还必须考虑是否伴有其他耐药机制。细胞对细胞毒药物的耐药性是一种多因素现象,不仅涉及防御机制,还涉及细胞对基因毒性的应激反应,如DNA修复效率,DNA损伤的耐受性,应激反应和凋亡易感性 [6]。

6. GGT和顺铂肾毒性的关系

肾毒性限制了顺铂的给药剂量 [61]。顺铂对于近端肾小管细胞的损伤机制也一直是近年来的研究热点。由于近端肾小管管腔细胞表面GGT存在高表达,一些研究认为顺铂在GGT的作用下导致肾毒性。因此形成了一种假说,即顺铂-GSH复合物通过肾小球滤液到达肾小管管腔,可通过肾小管GGT和细胞膜二肽酶依次进行细胞外水解,从而形成半胱氨酸-顺铂复合物。然后,这些S-偶联物随即在一种够催化半胱氨酸S-偶联物β-裂解的酶的作用下转化为有毒的高反应性的巯基 [62]。在GGT敲除的小鼠中没有观察到顺铂的肾毒,而在GGT未敲除小鼠中发现了肾毒性,当用GGT抑制剂阿西维辛或半胱氨酸S-偶联物β-裂解酶抑制剂氨基羟乙酸的预处理后,表现出肾脏的保护作用 [63] [64] [65]。而在另外一项实验中,采用氨肽酶或肾二肽酶的抑制剂以及半胱氨酸S-偶联物β-裂解酶抑制剂均不能预防肾毒性 [66]。这些相互矛盾的数据表明,顺铂肾毒性的机制可能涉及其他因素。特别是,动物研究和临床试验都表明,外源性GSH预处理降低了顺铂诱导的肾毒性,但并不降低其抗肿瘤活性 [67] [68]。此外,与对照组相比,使用GGT抑制剂阿西维辛或敲除GGT基因均能使小鼠血浆GSH浓度增加数倍 [69] [70];相反又导致GSH的肾小球滤过增加,使尿液中浓度高达5~30 mmol/l [71]。由此可知,除抑制GGT活性外,高浓度的GSH能够直接对抗顺铂的细胞毒作用,对肾小管起到保护作用 [58]。近期,体外研究发现顺铂与GSH至少能够形成11种不同的GSH-铂复合物进行,但孵育24 h后只剩余两种复合物 [72]。Townsend等人发现这两种复合物分别是GSH-单铂复合物和GSH-二铂复合物。GSH-单铂复合物是GGT的潜在底物,而GSH-二铂复合物中由于第二个铂与谷氨酸的游离氨基结合,因此GSH-二铂复合物可能不会被GGT识别和结合 [72]。因此对于不同肿瘤、不同个体,由于GSH与顺铂形成复合物的类型的及相对丰度的不同,导致了个体间肾毒性的差异 [43]。

7. 以GGT为靶向的抗肿瘤治疗前景

GGT活性在癌细胞耐药中的作用表明,将GGT抑制剂与化疗药物联合使用具有潜在优势,目的在于消耗细胞内GSH水平和/或抑制化疗药物在被阻滞于胞外,提高化疗药物的细胞毒作用。最近的一项动物研究中,联合使用常规化疗药物和阿西维辛干预肝脏转移性黑色素瘤模型,完全治愈率高达90% [73]。目前已知的GGT抑制剂除谷氨酰胺类似物阿西维辛、L-谷氨酸衍生物、γ-苯基磷酸甘氨酸类似物等,遗憾的是上述抑制剂由于毒性尚不能用于人类 [74] [75]。最近研究发现一类新型的GGT非竞争性抑制剂,其结构上与谷氨酰胺类似物不同且毒性更小 [76]。目前,低毒性的GGT抑制剂的研发是药理学研究的一个方向,可能对癌症治疗产生重要影响。

8. 小结

已有的研究表明,GGT在肿瘤的发生发展和耐药中的作用十分复杂。GGT抗氧化和促氧化功能之间可能存在一种平衡,当细胞GGT过表达或在氧化还原催化剂(如金属离子)的存在下,促氧化作用可能更占优势。GGT的促氧化活性有助于肿瘤组织持续的氧化应激状态,并调节参与肿瘤进展的过程,如细胞增殖/凋亡以及产生顺铂耐药。随着研究的深入,GGT有望成为某些肿瘤进展的监测指标和顺铂耐药的预测因素,以GGT为靶标的治疗方法有望成为未来抗肿瘤治疗的一个新方向。

基金项目

江苏省研究型医院学会精益化用药科研基金(JY202039)。

NOTES

*通讯作者。

参考文献

[1] 乔杰, 宋艳红. 谷氨酰转肽酶的研究进展[J]. 医学理论与实践, 2019, 32(5): 651-653.
[2] Lim, J.S., Yang, J.H., Chun, B.Y., et al. (2004) Is Serum Gamma-Glutamyltransferase Inversely Associated with Serum Antioxidants as a Marker of Oxidative Stress? Free Radical Biology and Medicine, 37, 1018-1023.
https://doi.org/10.1016/j.freeradbiomed.2004.06.032
[3] Pastore, A., Federici, G., Bertini, E., et al. (2003) Analysis of Glutathione: Implication in Redox and Detoxification. Clinica Chimica Acta, 333, 19-39.
https://doi.org/10.1016/S0009-8981(03)00200-6
[4] Corti, A., Franzini, M., Paolicchi, A., et al. (2010) Gamma-Glutamyltransferase of Cancer Cells at the Crossroads of Tumor Progression, Drug Resistance and Drug Targeting. Anticancer Research, 30, 1169-1181.
[5] Whitfield, J.B. (2001) Gamma Glutamyl Transferase. Critical Reviews in Clinical Laboratory Sciences, 38, 263-355.
https://doi.org/10.1080/20014091084227
[6] Pompella, A., De Tata, V., Paolicchi, A., et al. (2006) Expression of Gamma-Glutamyltransferase in Cancer Cells and Its Significance in Drug Resistance. Biochemical Pharmacology, 71, 231-238.
https://doi.org/10.1016/j.bcp.2005.10.005
[7] Pompella, A., Corti, A., Paolicchi, A., et al. (2007) Gamma-Glutamyltransferase, Redox Regulation and Cancer Drug Resistance. Current Opinion in Pharmacology, 7, 360-366.
https://doi.org/10.1016/j.coph.2007.04.004
[8] Dilda, P.J., Ramsay, E.E., Corti, A., et al. (2008) Metabolism of the Tumor Angiogenesis Inhibitor 4-(N-(S-Glutathi- onylacetyl)Amino) Phenylarsonous Acid. Journal of Biological Chemistry, 283, 35428-35434.
https://doi.org/10.1074/jbc.M804470200
[9] Roomi, M.W., Gaal, K., Yuan, Q.X., et al. (2006) Preneoplastic Liver Cell Foci Expansion Induced by Thioacetamide Toxicity in Drug-Primed Mice. Experimental and Molecular Pathology, 81, 8-14.
https://doi.org/10.1016/j.yexmp.2006.02.006
[10] Borud, O., Mortensen, B., Mikkelsen, I.M., et al. (2000) Regulation of Gamma-Glutamyltransferase in Cisplatin-Re- sistant and -Sensitive Colon Carcinoma Cells after Acute Cisplatin and Oxidative Stress Exposures. International Journal of Cancer, 88, 464-468.
https://doi.org/10.1002/1097-0215(20001101)88:3<464::AID-IJC20>3.0.CO;2-F
[11] Mikkelsen, I.M., Huseby, N.E., Visvikis, A., et al. (2002) Activation of the Gamma-Glutamyltransferase Promoter 2 in the Rat Colon Carcinoma Cell Line CC531 by Histone Deacetylase Inhibitors Is Mediated Through the Sp1 Binding Motif. Biochemical Pharmacology, 64, 307-315.
https://doi.org/10.1016/S0006-2952(02)01116-4
[12] Daubeuf, S., Duvoix, A., Wellman-Rousseau, M., et al. (2004) Phorbol Ester Regulation of the Human Gamma-Glu- tamyltransferase Gene Promoter. Biochemical and Biophysical Research Communications, 313, 300-307.
https://doi.org/10.1016/j.bbrc.2003.11.121
[13] Zhang, H., Liu, H., Iles, K.E., et al. (2006) 4-Hydroxynonenal Induces Rat Gamma-Glutamyl Transpeptidase Through Mitogen-Activated Protein Kinase-Mediated Electrophile Response Element/nuclear Factor Erythroid 2-Related Factor 2 Signaling. The American Journal of Respiratory Cell and Molecular Biology, 34, 174-181.
https://doi.org/10.1165/rcmb.2005-0280OC
[14] Pandur, S., Pankiv, S., Johannessen, M., et al. (2007) Gamma-Glutamyltransferase Is Upregulated after Oxidative Stress through the Ras Signal Transduction Pathway in Rat Colon Carcinoma Cells. Free Radical Research, 41, 1376-1384.
https://doi.org/10.1080/10715760701739488
[15] Daubeuf, S., Accaoui, M.J., Pettersen, I., et al. (2001) Differential Regulation of Gamma-Glutamyltransferase MRNAs in Four Human Tumour Cell Lines. Biochimica et Biophysica Acta, 1568, 67-73.
https://doi.org/10.1016/S0304-4165(01)00201-X
[16] Bouman, L., Sancéau, J., Rouillard, D., et al. (2002) Gamma-Glutamyl Transpeptidase Expression in Ewing’s Sarcoma Cells: Up-Regulation by Interferons. Biochemical Journal, 364, 719-724.
https://doi.org/10.1042/bj20011854
[17] Reuter, S., Schnekenburger, M., Cristofanon, S., et al. (2009) Tumor Necrosis Factor Alpha Induces Gamma-Gluta- myltransferase Expression Via Nuclear Factor-KappaB in Cooperation with Sp1. Biochemical Pharmacology, 77, 397- 411.
https://doi.org/10.1016/j.bcp.2008.09.041
[18] Murata, J., Ricciardi-Castagnoli, P., Dessous L’Eglise Mange, P., et al. (1997) Microglial Cells Induce Cytotoxic Effects toward Colon Carcinoma Cells: Measurement of Tumor Cytotoxicity with a Gamma-Glutamyl Transpeptidase Assay. International Journal of Cancer, 70, 169-174.
https://doi.org/10.1002/(SICI)1097-0215(19970117)70:2<169::AID-IJC6>3.0.CO;2-V
[19] Tsutsumi, M., Sakamuro, D., Takada, A., et al. (1996) Detection of a Unique Gamma-Glutamyl Transpeptidase Messenger RNA Species Closely Related to the Development of Hepatocellular Carcinoma in Humans: A New Candidate for Early Diagnosis of Hepatocellular Carcinoma. Hepatology, 23, 1093-1097.
https://doi.org/10.1053/jhep.1996.v23.pm0008621139
[20] Schäfer, C., Fels, C., Brucke, M., et al. (2001) Gamma-Glutamyl Transferase Expression in Higher-Grade Astrocytic Glioma. Acta Oncologica, 40, 529-535.
[21] Paolicchi, A., Pompella, A., Tonarelli, P., et al. (1996) Gamma-Glutamyltranspeptidase Activity in Human Ovarian Carcinoma. Anticancer Research, 16, 3053-3058.
[22] Hanigan, M.H., Frierson, Jr., H.F., Swanson, P.E. and De Young, B.R. (1999) Altered Expression of Gamma-Glutamyl Transpeptidase in Human Tumors. Human Pathology, 30, 300-305.
https://doi.org/10.1016/S0046-8177(99)90009-6
[23] Prezioso, J.A., Wang, N., Duty, L., et al. (1993) Enhancement of Pulmonary Metastasis Formation and Gamma-Glu- tamyltranspeptidase Activity in B16 Melanoma Induced by Differentiation in Vitro. Clinical & Experimental Metastasis, 11, 263-274.
https://doi.org/10.1007/BF00121169
[24] Staudigl, C., Concin, N., Grimm, C., et al. (2015) Prognostic Relevance of Pretherapeutic Gamma-Glutamyltransferase in Patients with Primary Metastatic Breast Cancer. PLoS ONE, 10, Article ID: e0125317.
https://doi.org/10.1371/journal.pone.0125317
[25] 张义静, 马莎, 魏晋, 曹希亮, 陈伟, 祁岳坤. 肾癌患者术前血清γ-谷氨酰转肽酶水平与术后生存的相关性研究[J]. 肿瘤研究与临床, 2021, 33(9): 668-672.
[26] Takemura, K., Board, P.G. and Koga, F. (2021) A Systematic Review of Serum γ-Glutamyltransferase as a Prognostic Biomarker in Patients with Genitourinary Cancer. Antioxidants, 10, Article No. 549.
https://doi.org/10.3390/antiox10040549
[27] Ozdemirler, G., Pabuççuoglu, H., Bulut, T., et al. (1998) Increased Lipoperoxide Levels and Antioxidant System in Colorectal Cancer. Journal of Cancer Research and Clinical Oncology, 124, 555-559.
https://doi.org/10.1007/s004320050214
[28] Koenig, G. and Seneff, S. (2015) Gamma-Glutamyltransferase: A Predictive Biomarker of Cellular Antioxidant Inadequacy and Disease Risk. Disease Markers, 2015, Article ID: 818570.
https://doi.org/10.1155/2015/818570
[29] Kunutsor, S.K., Apekey, T.A. and Seddoh, D. (2015) Gamma Glutamyltransferase and Metabolic Syndrome Risk: A Systematic Review and Dose-Response Meta-Analysis. International Journal of Clinical Practice, 69, 136-144.
https://doi.org/10.1111/ijcp.12507
[30] Hanigan, M.H. (1995) Expression of Gamma-Glutamyl Transpeptidase Provides Tumor Cells with a Selective Growth Advantage at Physiologic Concentrations of Cyst(e)ine. Carcinogenesis, 16, 181-185.
https://doi.org/10.1093/carcin/16.2.181
[31] Hochwald, S.N., Harrison, L.E., Rose, D.M., et al. (1996) Gamma-Glutamyl Transpeptidase Mediation of Tumor Glutathione Utilization in Vivo. Journal of the National Cancer Institute, 88, 193-197.
https://doi.org/10.1093/jnci/88.3-4.193
[32] Franzini, M., Corti, A., Lorenzini, E., et al. (2006) Modulation of Cell Growth and Cisplatin Sensitivity by Membrane Gamma-Glutamyltransferase in Melanoma Cells. European Journal of Cancer, 42, 2623-2630.
https://doi.org/10.1016/j.ejca.2006.04.016
[33] Ruoso, P. and Hedley, D.W. (2004) Inhibition of Gamma-Glutamyl Transpeptidase Activity Decreases Intracellular Cysteine Levels in Cervical Carcinoma. Cancer Chemotherapy and Pharmacology, 54, 49-56.
https://doi.org/10.1007/s00280-004-0776-3
[34] Corti, A., Belcastro, E., Dominici, S., et al. (2020) The Dark Side of Gamma-Glutamyltransferase (GGT): Pathogenic Effects of An ‘antioxidant’ Enzyme. Free Radical Biology & Medicine, 160, 807-819.
https://doi.org/10.1016/j.freeradbiomed.2020.09.005
[35] Spear, N. and Aust, S.D. (1994) Thiol-Mediated NTA-Fe(III) Reduction and Lipid Peroxidation. Archives of Biochemistry and Biophysics, 312, 198-202.
https://doi.org/10.1006/abbi.1994.1299
[36] Stark, A.A., Russell, J.J., Langenbach, R., et al. (1994) Localization of Oxidative Damage by a Glutathione-Gamma- Glutamyl Transpeptidase System in Preneoplastic Lesions in Sections of Livers from Carcinogen-Treated Rats. Carcinogenesis, 15, 343-348.
https://doi.org/10.1093/carcin/15.2.343
[37] Stark, A.A. and Glass, G.A. (1997) Role of Copper and Ceruloplasmin in Oxidative Mutagenesis Induced by the Glutathione-Gamma-Glutamyl Transpeptidase System and by Other Thiols. Environmental and Molecular Mutagenesis, 29, 63-72.
https://doi.org/10.1002/(SICI)1098-2280(1997)29:1<63::AID-EM9>3.0.CO;2-E
[38] Corti, A., Duarte, T.L., Giommarelli, C., et al. (2009) Membrane Gamma-Glutamyl Transferase Activity Promotes Iron-Dependent Oxidative DNA Damage in Melanoma Cells. Mutation Research, 669, 112-121.
https://doi.org/10.1016/j.mrfmmm.2009.05.010
[39] Drozdz, R., Parmentier, C., Hachad, H., et al. (1998) Gamma-Glutamyltransferase Dependent Generation of Reactive Oxygen Species from a Glutathione/Transferrin System. Free Radical Biology & Medicine, 25, 786-792.
https://doi.org/10.1016/S0891-5849(98)00127-0
[40] Toyokuni, S., Okamoto, K., Yodoi, J., et al. (1995) Persistent Oxidative Stress in Cancer. FEBS Letters, 358, 1-3.
https://doi.org/10.1016/0014-5793(94)01368-B
[41] Sen, C.K. (1998) Redox Signaling and the Emerging Therapeutic Potential of Thiol Antioxidants. Biochemical Pharmacology, 55, 1747-1758.
https://doi.org/10.1016/S0006-2952(97)00672-2
[42] Maellaro, E., Dominici, S., Del Bello, B., et al. (2000) Membrane Gamma-Glutamyl Transpeptidase Activity of Melanoma Cells: Effects on Cellular H2O2 Production, Cell Surface Protein Thiol Oxidation and NF-Kappa B Activation Status. Journal of Cell Science, 113, 2671-2678.
https://doi.org/10.1242/jcs.113.15.2671
[43] Dominici, S., Visvikis, A., Pieri, L., et al. (2003) Redox Modulation of NF-KappaB Nuclear Translocation and DNA Binding in Metastatic Melanoma. The Role of Endogenous and Gamma-Glutamyl Transferase-Dependent Oxidative Stress. Tumori Journal, 89, 426-433.
https://doi.org/10.1177/030089160308900416
[44] Foyer, C.H., Wilson, M.H. and Wright, M.H. (2018) Redox Regulation of Cell Proliferation: Bioinformatics and Redox Proteomics Approaches to Identify Redox-Sensitive Cell Cycle Regulators. Free Radical Biology & Medicine, 122, 137-149.
https://doi.org/10.1016/j.freeradbiomed.2018.03.047
[45] Perego, P., Paolicchi, A., Tongiani, R., et al. (1997) The Cell-Specific Anti-Proliferative Effect of Reduced Glutathione Is Mediated by Gamma-Glutamyl Transpeptidase-Dependent Extracellular Pro-Oxidant Reactions. International Journal of Cancer, 71, 246-250.
https://doi.org/10.1002/(SICI)1097-0215(19970410)71:2<246::AID-IJC20>3.0.CO;2-E
[46] del Bello, B., Paolicchi, A., Comporti, M., et al. (1999) Hydrogen Peroxide Produced During Gamma-Glutamyl Transpeptidase Activity Is Involved in Prevention of Apoptosis and Maintainance of Proliferation in U937 Cells. The FASEB Journal, 13, 69-79.
https://doi.org/10.1096/fasebj.13.1.69
[47] Giommarelli, C., Corti, A., Supino, R., et al. (2008) Cellular Response to Oxidative Stress and Ascorbic Acid in Melanoma Cells Overexpressing Gamma-Glutamyltransferase. European Journal of Cancer, 44, 750-759.
https://doi.org/10.1016/j.ejca.2008.02.010
[48] Corti, A., Raggi, C., Franzini, M., et al. (2004) Plasma Membrane Gamma-Glutamyltransferase Activity Facilitates the Uptake of Vitamin C in Melanoma Cells. Free Radical Biology & Medicine, 37, 1906-1915.
https://doi.org/10.1016/j.freeradbiomed.2004.08.015
[49] Shi, M., Gozal, E., Choy, H.A., et al. (1993) Extracellular Glutathione and Gamma-Glutamyl Transpeptidase Prevent H2O2-Induced Injury by 2,3-Dimethoxy-1,4-Naphthoquinone. Free Radical Biology & Medicine, 15, 57-67.
https://doi.org/10.1016/0891-5849(93)90125-E
[50] Hochwald, S.N., Rose, D.M., Brennan, M.F., et al. (1997) Elevation of Glutathione and Related Enzyme Activities in High-Grade and Metastatic Extremity Soft Tissue Sarcoma. Annals of Surgical Oncology, 4, 303-309.
https://doi.org/10.1007/BF02303579
[51] Mares, V., Lisá, V., Malík, R., et al. (2003) Cisplatin Induced Gamma-Glutamyltransferase Up-Regulation, Hypertrophy and Differentiation in Astrocytic Glioma Cells in Culture. Histology and Histopathology, 18, 687-693.
[52] Benlloch, M., Ortega, A., Ferrer, P., et al. (2005) Acceleration of Glutathione Efflux and Inhibition of Gamma-Glu- tamyltranspeptidase Sensitize Metastatic B16 Melanoma Cells to Endothelium-Induced Cytotoxicity. Journal of Biological Chemistry, 280, 6950-6959.
https://doi.org/10.1074/jbc.M408531200
[53] Warren, B.S., Naylor, M.F., Winberg, L.D., et al. (1993) Induction and Inhibition of Tumor Progression. Proceedings of the Society for Experimental Biology and Medicine, 202, 19-15.
https://doi.org/10.3181/00379727-202-43511B
[54] Paolicchi, A., Lorenzini, E., Perego, P., et al. (2002) Extra-Cellular Thiol Metabolism in Clones of Human Metastatic Melanoma with Different Gamma-Glutamyl Transpeptidase Expression: Implications for Cell Response to Platinum-Based Drugs. International Journal of Cancer, 97, 740-745.
https://doi.org/10.1002/ijc.10110
[55] Perego, P., Romanelli, S., Carenini, N., et al. (1998) Ovarian Cancer Cisplatin-Resistant Cell Lines: Multiple Changes Including Collateral Sensitivity to Taxol. Annals of Oncology, 9, 423-430.
https://doi.org/10.1023/A:1008265012435
[56] Hanigan, M.H., Frierson Jr., H.F., Abeler, V.M., et al. (1999) Human Germ Cell Tumours: Expression of Gamma- Glutamyl Transpeptidase and Sensitivity to Cisplatin. British Journal of Cancer, 81, 75-79.
https://doi.org/10.1038/sj.bjc.6690653
[57] Zimmermann, T., Zeizinger, M. and Burda, J.V. (2005) Cisplatin Interaction with Cysteine and Methionine, a Theoretical DFT Study. Journal of Inorganic Biochemistry, 99, 2184-2196.
https://doi.org/10.1016/j.jinorgbio.2005.07.021
[58] Paolicchi, A., Sotiropuolou, M., Perego, P., et al. (2003) Gamma-Glutamyl Transpeptidase Catalyses the Extracellular Detoxification of Cisplatin in a Human Cell Line Derived from the Proximal Convoluted Tubule of the Kidney. European Journal of Cancer, 39, 996-1003.
https://doi.org/10.1016/S0959-8049(03)00067-4
[59] Jerremalm, E., Wallin, I., Yachnin, J., et al. (2006) Oxaliplatin Degradation in the Presence of Important Biological Sulphur-Containing Compounds and Plasma Ultrafiltrate. European Journal of Pharmaceutical Sciences, 28, 278-283.
https://doi.org/10.1016/j.ejps.2006.03.001
[60] Daubeuf, S., Leroy, P., Paolicchi, A., et al. (2002) Enhanced Resistance of HeLa Cells to Cisplatin by Overexpression of Gamma-Glutamyltransferase. Biochemical Pharmacology, 64, 207-216.
https://doi.org/10.1016/S0006-2952(02)01118-8
[61] Arany, I., Safirstein, R.L. (2003) Cisplatin Nephrotoxicity. Seminars in Nephrology, 23, 460-464.
https://doi.org/10.1016/S0270-9295(03)00089-5
[62] Zhang, L. and Hanigan, M.H. (2003) Role of Cysteine S-Conjugate Beta-Lyase in the Metabolism of Cisplatin. Journal of Pharmacology and Experimental Therapeutics, 306, 988-994.
https://doi.org/10.1124/jpet.103.052225
[63] Hanigan, M.H., Lykissa, E.D., Townsend, D.M., et al. (2001) Gamma-Glutamyl Transpeptidase-Deficient Mice Are Resistant to the Nephrotoxic Effects of Cisplatin. The American Journal of Pathology, 159, 1889-1894.
https://doi.org/10.1016/S0002-9440(10)63035-0
[64] Hanigan, M.H., Gallagher, B.C., Taylor Jr., P.T., et al. (1994) Inhibition of Gamma-Glutamyl Transpeptidase Activity by Acivicin in Vivo Protects the Kidney from Cisplatin-Induced Toxicity. Cancer Research, 54, 5925-5929.
[65] Townsend, D.M. and Hanigan, M.H. (2002) Inhibition of Gamma-Glutamyl Transpeptidase Or Cysteine S-Conjugate Beta-Lyase Activity Blocks the Nephrotoxicity of Cisplatin in Mice. Journal of Pharmacology and Experimental Therapeutics, 300, 142-148.
https://doi.org/10.1124/jpet.300.1.142
[66] Wainford, R.D., Weaver, R.J., Stewart, K.N., et al. (2008) Cisplatin Nephrotoxicity Is Mediated by Gamma Glutamyltranspeptidase, Not Via a C-S Lyase Governed Biotransformation Pathway. Toxicology, 249, 184-193.
https://doi.org/10.1016/j.tox.2008.05.006
[67] Zunino, F., Pratesi, G., Micheloni, A., et al. (1989) Protective Effect of Reduced Glutathione against Cisplatin-Induced Renal and Systemic Toxicity and Its Influence on the Therapeutic Activity of the Antitumor Drug. Chemico-Biological Interaction, 70, 89-101.
https://doi.org/10.1016/0009-2797(89)90065-3
[68] Bernareggi, A., Torti, L., Facino, R.M., et al. (1995) Characterization of Cisplatin-Glutathione Adducts by Liquid Chromatography-Mass Spectrometry. Evidence for Their Formation in Vitro but Not in Vivo after Concomitant Administration of Cisplatin and Glutathione to Rats ANC Cancer Patients. Journal of Chromatography B: Biomedical Sciences and Applications, 669, 247-263.
https://doi.org/10.1016/0378-4347(95)00098-4
[69] Griffith, O.W. and Meister, A. (1979) Translocation of Intracellular Glutathione to Membrane-Bound Gamma-Glutamyl Transpeptidase as a Discrete Step in the Gamma-Glutamyl Cycle: Glutathionuria after Inhibition of Transpeptidase. Proceedings of the National Academy of Sciences of the United States of America, 76, 268-272.
https://doi.org/10.1073/pnas.76.1.268
[70] Lieberman, M.W., Wiseman, A.L., Shi, Z.Z., et al. (1996) Growth Retardation and Cysteine Deficiency in Gamma- Glutamyl Transpeptidase-Deficient Mice. Proceedings of the National Academy of Sciences of the United States of America, 93, 7923-7926.
https://doi.org/10.1073/pnas.93.15.7923
[71] Larsson, A., Orrenius, S., Holmgren, A., Mannervik, B. and Meister, A. (1983) Metabolism and Transport of Glutathione and Other Gamma-Glutamyl Compounds. In: Larsson, A., Orrenius, S., Holmgren, A. and Mannervik, B., Eds, Functions of Glutathione: Biochemical, Toxicological and Clinical Aspects, Raven Press, New York, 1-22.
[72] Heudi, O., Brisset, H., Cailleux, A., et al. (2001) Chemical Instability and Methods for Measurement of Cisplatin Adducts Formed by Interactions with Cysteine and Glutathione. International Journal of Clinical Pharmacology and Therapeutics, 39, 344-349.
https://doi.org/10.5414/CPP39344
[73] Mena, S., Benlloch, M., Ortega, A., et al. (2007) Bcl-2 and Glutathione Depletion Sensitizes B16 Melanoma to Combination Therapy and Eliminates Metastatic Disease. Clinical Cancer Research, 13, 2658-2666.
https://doi.org/10.1158/1078-0432.CCR-06-2642
[74] Lherbet, C., Gravel, C. and Keillor, J.W. (2004) Synthesis of S-Alkyl L-Homocysteine Analogues of Glutathione and Their Kinetic Studies with Gamma-Glutamyl Transpeptidase. Bioorganic & Medicinal Chemistry Letters, 14, 3451- 3455.
https://doi.org/10.1016/j.bmcl.2004.04.072
[75] Han, L., Hiratake, J., Kamiyama, A., et al. (2007) Design, Synthesis, and Evaluation of Gamma-Phosphono Diester Analogues of Glutamate as Highly Potent Inhibitors and Active Site Probes of Gamma-Glutamyl Transpeptidase. Biochemistry, 46, 1432-1447.
https://doi.org/10.1021/bi061890j
[76] King, J.B., West, M.B., Cook, P.F., et al. (2009) A Novel, Species-Specific Class of Uncompetitive Inhibitors of Gamma-Glutamyl Transpeptidase. Journal of Biological Chemistry, 284, 9059-9065.
https://doi.org/10.1074/jbc.M809608200