血小板在子宫内膜异位症发病机制中的作用及新的治疗思路
The Role of Platelets in the Pathogenesis of Endometriosis and New Therapeutic Ideas
DOI: 10.12677/ACM.2022.124367, PDF, HTML, XML, 下载: 255  浏览: 484 
作者: 许万增, 王慧粉, 陶文康, 史纪芳*:大理大学,云南 大理
关键词: 子宫内膜异位症血小板发病机制药物治疗Endometriosis Platelet Pathogenesis Drug Therapy
摘要: 子宫内膜异位症(Endometriosis, EMT)是一种常见的妇科疾病,它严重影响着女性的身心健康,目前对于子宫内膜异位症的药物治疗仍是以激素类药物为主,但是存在着激素类药物相关的副作用,且并不能从根本上解决问题。随着对于子宫内膜异位症发病机制的研究逐渐深入,血小板在EMT发病过程中的作用逐渐被揭示,它在疾病发展过程中的局部炎症反应、免疫调节的失调、雌激素产生的增加、组织细胞的缺氧等诸多方面起着重要作用,这也为我们探索激素类药物之外的治疗方案提供了新的思路。本文就血小板在EMT的发生发展过程中起的作用进行综述,同时探讨抗血小板治疗在EMT治疗中的可行性。
Abstract: Endometriosis (EMT) is a common gynecological disease, which seriously affects the physical and mental health of women, at present, the drug treatment of endometriosis is still mainly hormone drugs, but there are hormone-related side effects, and can’t fundamentally solve the problem. With the in-depth study of the pathogenesis of endometriosis, the role of platelets in the pathogenesis of EMT has been gradually revealed, and it plays an important role in many aspects, such as local inflammatory reaction, imbalance of immune regulation, increase of estrogen production, hypoxia of tissues and cells, etc., which also provides a new idea for us to explore treatments other than hormone drugs. This article reviews the role of platelets in the occurrence and development of EMT, and discusses the feasibility of antiplatelet therapy in EMT treatment.
文章引用:许万增, 王慧粉, 陶文康, 史纪芳. 血小板在子宫内膜异位症发病机制中的作用及新的治疗思路[J]. 临床医学进展, 2022, 12(4): 2546-2551. https://doi.org/10.12677/ACM.2022.124367

1. 引言

子宫内膜异位症(Endometriosis, EMT)是指子宫内膜组织(腺体和间质)出现在子宫体以外的部位,是一种慢性炎性的疾病,可以侵犯全身任何部位。是妇女痛经、不孕、盆腔疼痛的主要原因 [1]。近年来,内异症发病率呈现逐年增高的趋势,与社会经济状况呈正相关。内异症发病率的增高也与剖宫产率增高、人工流产和宫腔镜操作增多有关。慢性炎症反应、细胞增殖、侵袭和血管形成等与EMT的发生、发展和复发密切相关。目前腹腔镜直视诊断目前仍是EMT确诊的金标准,近年来EMT生物标记物领域得到了越来越多的关注 [1]。手术治疗仍是临床治疗EMT的主要方式,但术后复发率高,且有可能导致盆腔粘连、器官损伤并影响卵巢的储备功能 [2]。药物治疗以激素治疗为主,但存在激素相关的副作用,并且激素类药物的治疗并不能解决患者的不孕问题。在此背景下,药物治疗研究的努力方向应集中在耐受性好、成本低、容易获得且能够作用在局部病变的药物上。最近越来越多研究显示,血小板在子宫内膜异位症的发生发展中起着重要作用 [3] [4] [5] [6] [7],这也为EMT非激素类药物的开发提供了一个新的方向。本文就血小板在EMT中发挥的作用进行综述,同时探讨对于抗血小板治疗在子宫内膜异位症中的可行性。

2. 血小板在子宫内膜异位症发病机制中所起的作用

2.1. 血小板与炎症反应及免疫调节失调

子宫内膜异位症被认为是一种炎症性疾病,子宫内膜异位症细胞和组织产生细胞因子、趋化因子和前列腺素,引发局部免疫和炎症反应。炎症反应包括异位内膜产生的CC和CXC趋化因子吸引的巨噬细胞、中性粒细胞、T细胞和嗜酸性粒细胞等 [8]。另外,还包括环氧合酶(COX-2)等促炎细胞因子产生的增加。在先天免疫反应中,中性粒细胞反应是由子宫内膜间质细胞表达CXC趋化因子白细胞介素-8 (IL-8)和CCL2 (单核细胞趋化蛋白1)介导的。腹腔液中巨噬细胞吞噬能力下降,炎性细胞因子(肿瘤坏死因子-α、白细胞介素-1β和白细胞介素-6)、促血管生成因子(血管内皮生长因子)以及生长因子和黏附分子的活性增强 [8] [9]。现已被证实,子宫内膜异位症衍生的基质细胞分泌凝血酶和血栓素A2 (TXA2),诱导血小板活化 [5]。而活化的血小板会激活NF-κB [6],NF-κB可以调节促炎基因的表达,并与增加上皮间质转化和病变转移有关 [10]。另外,血小板可以通过减少NKG2D配体MICA/B的表达,减少NK细胞脱粒和IFN-γ的产生等途径使NK细胞活性受损,从而破坏NK细胞的免疫监视。

2.2. 血小板与EMT病灶周期性出血及纤维化

随着对于EMT研究的深入,越来越多的证据表明了子宫内膜异位病变的周期性出血从根本上说就是经历反复组织损伤和不断修复的伤口 [7] [11],而这一过程与一般伤口的愈合极为相似:当血管内皮层损伤之后,暴露出内皮下基质成分,静息状态下的血小板被激活,发生活化、聚集、黏附、释放大量活性物质,随后启动凝血系统并形成局部凝血块 [12]。血小板被激活后释放的活性物质中包含大量的转化生长因子(TGF-β1)和血小板衍生生长因子(PDGF) [13] [14],这些活化因子联合其他免疫细胞分泌的转化生长因子(TGF-β1)或感觉神经纤维致细胞收缩力和胶原蛋白生成增加,最终导致了病变的纤维化 [7] [15]。Vigano博士及其团队因此曾对子宫内膜异位症提出一种新的定义:一种可以识别子宫内膜间质和腺体的纤维化状态 [16],这种定义更全面的概括了EMT特征。而目前应用的治疗EMT的药物都存在着局限性,其中很重要的一部分就是忽略了子宫内膜异位性遍的纤维化特性 [17],且子宫内膜的诊断往往延后于发病后的6~10年 [18],因此一名患者确诊ENT后,她的病变很可能已经高度纤维化。

2.3. 血小板诱导雌激素增加

EMT一直被视为一种雌激素依赖性疾病。异位子宫内膜的增殖需要雌二醇,在子宫内膜异位病灶中,雌激素受体β (ER-β)表达明显增加 [19]。另外,EMT通常还被视为一种炎性疾病,在其病灶促炎因子激活环氧合酶2 (COX-2),导致前列腺素E2 (PGE2)的产生增加,进而刺激类固醇生成急性调节蛋白、芳香酶、17β-羟基类固醇脱氢酶1型(HSD17B1)等部分产生E2的关键基因,导致雌激素E2的增加。增加的E2进一步刺激雌激素受体β (ER-β),进一步诱导COX-2增加 [20]。已有研究表明,活化的血小板不仅可以通过上调StAR、HSD3B2、芳香酶和HSD17B1的基因表达,从而使子宫内膜异位症基质细胞中E2的产生增加,而且可以通过激活NF-κB和/或TGF-β1激活这些基因,拮抗这两条信号通路中任一信号通路都可以消除这4个基因的诱导,从而导致雌激素的产生增加。这也说明了血小板可以通过多种途径导致使雌激素增加 [6]。

2.4. 血小板与细胞组织缺氧

我们已经知道,在月经来临前的子宫内膜处于缺血缺氧的状态,而缺氧诱导因子1α (HIF-α)可以在缺氧的状态下迅速积累,并且在氧气恢复后迅速下降 [21]。在易患子宫内膜异位症的女性中,子宫内膜碎片很可能就处于缺血缺氧的状态,为了建立新的血管来供应氧气和营养,HIF调节的基因调控血管生成、增殖、迁移、细胞凋亡和新陈代谢等多种生物过程。在这些过程中,间皮细胞和活化的巨噬细胞表达生长因子和信号因子等多种信号物质 [22]。因此,缺氧可能在血液供应之前的逆行子宫内膜存活和早期植入的子宫内膜病变中的血管生成当中发挥重要作用 [23] [24]。在一项将人类子宫内膜异位症基质细胞(HESCs)和人类子宫内膜基质细胞(ESCL)与血小板共培养的实验中,HESC和ESCL中的HIF-1α和促红细胞生成素(EPO)的基因和蛋白表达水平显著增加,表明了活化的血小板可以激活子宫内膜和子宫内膜异位症间质细胞中的HIF-1α,有效的产生缺氧状态 [25]。

3. EMT抗血小板治疗进展

3.1. 奥扎格雷

奥扎格雷能选择性地抑制血栓烷合成酶,从而抑制血栓烷A2的产生和促进前列环素(PGI2)的产生,改善二者间的平衡,最终抑制血小板聚集和减轻血管痉挛,改善大脑局部缺血时的微循环和能量代谢障碍。在子宫内膜小鼠实验中,发现奥扎格雷治疗和不同的血小板消耗方案均导致病变生长显着减少以及诱发子宫内膜异位症小鼠的痛觉过敏改善。它们还显着降低了增殖、血管生成、炎症和纤维化标志物的表达,以及减少了子宫内膜异位病变中巨噬细胞浸润 [4]。

3.2. 四甲基吡嗪(TMP)

四甲基吡嗪(TMP)是一种从数千年来在中药中用于对抗“血瘀”的草药中提取的化合物,是中国治疗脑血管疾病的处方药。在体外试验中发现,TMP治疗以浓度依赖性方式抑制血小板诱导的EMT、FMT、细胞收缩性和胶原蛋白的产生。并且在子宫内膜异位症小鼠模型中,TMP治疗可显着降低病灶重量和病灶纤维化程度并改善痛觉过敏,这很可能是通过减少病灶血小板聚集和EMT、FMT和纤维化 [26]。

3.3. 灯盏花乙素

灯盏花乙素是一种从传统上用作强效抗血小板剂的药草中分离出来的黄酮类化合物。在子宫内膜异位症消暑模型中分别给予低剂量和高剂量的灯盏花乙素治疗,发现低剂量组和高剂量组小鼠的病变重量均显着降低,痛觉过敏得到改善。灯盏花乙素还降低了外周活化血小板率,并导致血小板聚集、细胞增殖、血管生成、FMT程度和病灶纤维化程度显着降低。实验表明灯盏花乙素可通过抑制血小板聚集、抑制增殖、血管生成和纤维形成来有效治疗体内子宫内膜异位症,从而减少病变大小并改善疼痛行为 [27]。

3.4. 丹参酮(TAN)

TAN是一种从丹参根中提取的具有药理活性的二萜类化合物,丹参是一种用于中医治疗“瘀血”的植物。已证明TAN可抑制血小板聚集并抑制TGF-β1/Smad3和NF-κB信号通路,从而抑制纤维生成 [28] [29] [30]。丹参酮IIA磺酸钠注射液在中国被广泛用作治疗心血管疾病的处方药,并具有良好的安全性。在TAN治疗的子宫内膜异位症小鼠中,发现使用TAN治疗的子宫内膜异位症小鼠病灶大小以及上皮–间质转化和平滑肌化生和纤维发生均较对照组降低 [31]。

4. 总结

子宫内膜异位症作为雌激素依赖的慢性炎症性疾病,目前主要的药物治疗方案仍是激素类药物为主,针对发病机制的药物非常有限,主要治疗目的是减轻疼痛或异常子宫出血(非甾体类消炎药)或采用制造低雌激素环境的假孕、假绝经等激素疗法 [9]。大多数治疗方案可以使病情缓解,但是激素类药物不可避免存在不同程度的副作用,虽然手术治疗仍是目前效果最好的治疗方式,但是术后不仅复发风险高,对于仍有生育需求的女性,重复手术不同程度损伤患者卵巢储备功能,导致生育力降低或卵巢早衰等 [26]。随着对于EMT发病机制研究的逐渐深入,更利于我们从病因学方面去探寻新的治疗方法。血小板在EMT发病过程中的诸多环节不同程度影响着疾病的进展,尽管目前针对抗血小板治疗的研究大部分仍在动物模型或体外试验,但随着研究的不断深入,相信对于EMT的治疗终究会取得更大的进展。

NOTES

*通讯作者。

参考文献

[1] Giudice, L.C. and Kao, L.C. (2004) Endometriosis. The Lancet, 364, 1789-1799. https://doi.org/10.1016/S0140-6736(04)17403-5
[2] Singh, S.S. and Suen, M.W. (2017) Surgery for Endometriosis: Beyond Medical Therapies. Fertility and Sterility, 107, 549-554. https://doi.org/10.1016/j.fertnstert.2017.01.001
[3] Avcioglu, S.N., Altinkaya, S.O., Kucuk, M., Demircan-Sezer, S. and Yuksel, H. (2014) Can Platelet Indices Be New Biomarkers for Severe Endometriosis? International Scholarly Research Notices, 2014, Article ID: 713542. https://doi.org/10.1155/2014/713542
[4] Guo, S.W., Ding, D. and Liu, X. (2016) Anti-Platelet Therapy Is Efficacious in Treating Endometriosis Induced in Mouse. Reproductive BioMedicine Online, 33, 484-499. https://doi.org/10.1016/j.rbmo.2016.07.007
[5] Guo, S.W., Du, Y. and Liu, X. (2016) Endometriosis-Derived Stromal Cells Secrete Thrombin and Thromboxane A2, Inducing Platelet Activation. Reproductive Sciences, 23, 1044-1052. https://doi.org/10.1177/1933719116630428
[6] Qi, Q., Liu, X., Zhang, Q. and Guo, S.W. (2020) Platelets Induce Increased Estrogen Production through NF-kappaB and TGF-Beta1 Signaling Pathways in Endometriotic Stromal Cells. Scientific Reports, 10, Article No. 1281. https://doi.org/10.1038/s41598-020-57997-6
[7] Zhang, Q., Duan, J., Liu, X. and Guo, S.-W. (2016) Platelets Drive Smooth Muscle Metaplasia and Fibrogenesis in Endometriosis through Epithelial-Mesenchymal Transition and Fibro-blast-to-Myofibroblast Transdifferentiation. Molecular and Cellular Endocrinology, 428, 1-16. https://doi.org/10.1016/j.mce.2016.03.015
[8] Reis, F.M., Petraglia, F. and Taylor, R.N. (2013) Endometriosis: Hor-mone Regulation and Clinical Consequences of Chemotaxis and Apoptosis. Human Reproduction Update, 19, 406-418. https://doi.org/10.1093/humupd/dmt010
[9] Zondervan, K.T., Becker, C.M. and Missmer, S.A. (2020) Endometriosis. New England Journal of Medicine, 382, 1244-1256. https://doi.org/10.1056/NEJMra1810764
[10] Lin, W.-W. and Karin, M. (2007) A Cytokine-Mediated Link between Innate Immunity, Inflammation, and Cancer. Journal of Clinical Investigation, 117, 1175-1183. https://doi.org/10.1172/JCI31537
[11] Guo, S.-W., Ding, D., Shen, M. and Liu, X. (2015) Dating Endometriotic Ovarian Cysts Based on the Content of Cyst Fluid and its Potential Clinical Implications. Reproductive Sciences, 22, 873-883. https://doi.org/10.1177/1933719115570907
[12] 倪喆鑫, 张丹英, 姚睿嫔, 翟东霞, 俞瑾, 孙帅, 等. 活化血小板在子宫内膜异位症病理过程中的作用及抗血小板相关药物的治疗[J]. 生殖医学杂志, 2018, 27(12): 1250-1254.
[13] Assoian, R.K., Komoriya, A., Meyers, C.A., Miller, D.M. and Sporn, M.B. (1983) Transforming Growth Factor-Beta in Human Platelets. Identification of a Major Storage Site, Purification, and Characterization. Journal of Biological Chemistry, 258, 7155-7160. https://doi.org/10.1016/S0021-9258(18)32345-7
[14] Coppinger, J.A., Cagney, G., Toomey, S., Kislinger, T., Belton, O., McRedmond, J.P., et al. (2004) Characterization of the Proteins Released from Activated Platelets Leads to Localization of Novel Platelet Proteins in Human Atherosclerotic Lesions. Blood, 103, 2096-2104. https://doi.org/10.1182/blood-2003-08-2804
[15] Yan, D., Liu, X. and Guo, S.-W. (2017) Nerve Fibers and Endometriotic Lesions: Partners in Crime in Inflicting Pains in Women with Endometriosis. European Journal of Obstetrics & Gynecology and Reproductive Biology, 209, 14-24. https://doi.org/10.1016/j.ejogrb.2016.06.017
[16] Vigano, P., Candiani, M., Monno, A., Giacomini, E., Vercellini, P. and Somigliana. E. (2018) Time to Redefine Endometriosis Including Its Pro-Fibrotic Nature. Human Reproduction, 33, 347-352. https://doi.org/10.1093/humrep/dex354
[17] Guo, S.W. and Groothuis, P.G. (2018) Is It Time for a Paradigm Shift in Drug Research and Development in Endometriosis/Adenomyosis? Human Reproduction Update, 24, 577-598. https://doi.org/10.1093/humupd/dmy020
[18] Arruda, M.S., Petta, C.A., Abrao, M.S. and Benetti-Pinto, C.L. (2003) Time Elapsed from Onset of Symptoms to Diagnosis of Endometriosis in a Cohort Study of Brazilian Women. Human Reproduction, 18, 756-759. https://doi.org/10.1093/humrep/deg136
[19] Bulun, S.E., Monsavais, D., Pavone, M.E., Dyson, M., Xue, Q., Attar, E., et al. (2012) Role of Estrogen Receptor-β in Endometriosis. Seminars in Reproductive Medicine, 30, 39-45. https://doi.org/10.1055/s-0031-1299596
[20] Bulun, S.E., Lin, Z., Imir, G., Amin, S., Demura, M., Yilmaz, B., et al. (2005) Regulation of Aromatase Expression in Estrogen-Responsive Breast and Uterine Disease: From Bench to Treatment. Pharmacological Reviews, 57, 359-383. https://doi.org/10.1124/pr.57.3.6
[21] Semenza, G.L. (2004) Hydroxylation of HIF-1: Oxygen Sensing at the Molecular Level. Physiology, 19, 176-182. https://doi.org/10.1152/physiol.00001.2004
[22] Alpay, Z., Saed, G.M. and Diamond, M.P. (2006) Female Infertility and Free Radicals: Potential Role in Adhesions and Endometriosis. Journal of the Society for Gynecologic Investigation, 13, 390-398. https://doi.org/10.1016/j.jsgi.2006.05.002
[23] Wu, M.-H., Chen, K.-F., Lin, S.-C., Lgu, C.-W. and Tsai, S.-J. (2007) Aberrant Expression of Leptin in Human Endometriotic Stromal Cells Is Induced by Elevated Levels of Hypoxia In-ducible Factor-1α. The American Journal of Pathology, 170, 590-598. https://doi.org/10.2353/ajpath.2007.060477
[24] Xiong, Y., Liu, Y., Xiong, W., Zhang, L., Liu, H., Du, Y., et al. (2016) Hypoxia-Inducible Factor 1α-Induced Epithelial-Mesenchymal Transition of Endometrial Epithelial Cells May Contribute to the Development of Endometriosis. Human Reproduction, 31, 1327-1338. https://doi.org/10.1093/humrep/dew081
[25] Liu, X.-S., Qi, Q.-M. and Guo, S.-W. (2019) Activated Platelets Induce Hypoxia-Inducible Factor-1α Expression Likely through Transforming Growth Factor-β1 in Human Endometrial Stromal Cells. Reproductive and Developmental Medicine, 3, 69-76. https://doi.org/10.4103/2096-2924.262390
[26] Chen, Y., Pei, H., Chang, Y., Chen, M., Wang, H., Xie, H., et al. (2014) The Impact of Endometrioma and Laparoscopic Cystectomy on Ovarian Reserve and the Exploration of Related Factors Assessed by Serum Anti-Mullerian Hormone: A Prospective Cohort Study. Journal of Ovarian Research, 7, Article No. 108. https://doi.org/10.1186/s13048-014-0108-0
[27] Ding, D., Cai, X., Zheng, H., Guo, S.-W. and Liu, X. (2019) Scutellarin Suppresses Platelet Aggregation and Stalls Lesional Progression in Mouse with Induced Endometriosis. Reproductive sciences, 26, 1417-1428. https://doi.org/10.1177/1933719118817661
[28] Jiang, X., Chen, Y., Zhu, H., Wang, B., Qu, P.,Chen, R., et al. (2015) Sodium Tanshinone IIA Sulfonate Ameliorates Bladder Fibrosis in a Rat Model of Partial Bladder Outlet Obstruction by Inhibiting the TGF-β/Smad Pathway Activation. PLoS ONE, 10, e0129655. https://doi.org/10.1371/journal.pone.0129655
[29] Maione, F., De Feo, V., Caiazzo, E., De Martino, L., Cicala, C. and Mascolo, N. (2014) Tanshinone IIA, a Major Component of Salvia milthorriza Bunge, Inhibits Platelet Activation via Erk-2 Signaling Pathway. Journal of Ethnopharmacology, 155, 1236-1242. https://doi.org/10.1016/j.jep.2014.07.010
[30] Wang, D.-T., Huang, R.H., Cheng, X., Zhang, Z.H., Yang, Y.J. and Lin, X. (2015) Tanshinone IIA Attenuates Renal Fibrosis and Inflammation via Altering Expression of TGF-β/Smad and NF-κB Signaling Pathway in 5/6 Nephrectomized Rats. International Immunopharmacology, 26, 4-12. https://doi.org/10.1016/j.intimp.2015.02.027
[31] Zhang, Q., Liu, X. and Guo, S.W. (2017) Progressive Development of Endometriosis and Its Hindrance by Anti-Platelet Treatment in Mice with Induced Endometriosis. Reproductive BioMedicine Online, 34, 124-136. https://doi.org/10.1016/j.rbmo.2016.11.006