皮肤光老化机制研究进展
Research Progress on the Mechanism of Skin Photoaging
DOI: 10.12677/ACM.2022.124492, PDF, HTML, XML, 下载: 247  浏览: 690 
作者: 李喃欣:青海大学,青海 西宁
关键词: 紫外线光老化皮肤机制UVB Photoaging Skin Mechanism
摘要: 近年来,人们对皮肤外观越来越重视。皮肤老化分为内源性老化和外源性老化。了解皮肤光老化机制、开发相关抗光老化研究对皮肤科医生极为重要。本文对皮肤光老化机制进行综述。
Abstract: In recent years, there has been an increasing emphasis on the appearance of skin. Skin aging is divided into endogenous aging and exogenous aging. It is extremely important for dermatologists to understand the mechanism of skin photoaging and develop relevant anti-photoaging research. This article reviews the mechanisms of skin photoaging.
文章引用:李喃欣. 皮肤光老化机制研究进展[J]. 临床医学进展, 2022, 12(4): 3404-3409. https://doi.org/10.12677/ACM.2022.124492

1. 引言

凋亡是一种循序渐进的过程,主要是生物体的细胞内部结构和生理功能上的进行性老化 [1]。老化主要发生于细胞水平,而皮肤则是身体中最大的器官,其老化程度可以反映机体的整个衰老水平 [2]。遗传因素、环境、紫外线(UV)辐射等均可导致皮肤老化。皮肤老化是遗传条件(内部、按时间顺序排列的衰老)引起的变化与环境条件(外部衰老)刺激的衰老症状重叠。外源性老化主要是由紫外线所引起的,是可通过人为干预的 [3]。按照紫外光的波段,紫外光又可以分为UVA (320~400 nm)、UVB (280~320 nm)和UVC (200~280 nm) 3种类别,由于UVC在抵达大气以前基本全部被地球臭氧层吸收,所以可以抵达地表的紫外光主要有UVA、UVB。UVA有强大的透过力,可达真皮层,并损害弹力玻璃纤维和胶原蛋白纤维;UVB主要侵入表皮,并诱发日晒性红斑;而UVC则是对引起红斑和杀灭细菌中最有效的紫外线 [4]。紫外线照射于皮肤,可引起皮肤变得粗糙、肤色蜡黄无光泽、皱纹变深 [5]。

2. 紫外辐射引起的皮肤变化

皮肤是人们身体最大的脏器,主要由表面层、真皮层和皮下组织三个部分所组成。另外,人类皮肤中还包含了毛发、皮脂分泌腺、大汗腺、指甲等的皮肤附属物 [6]。表皮主要由角质形成的细胞组成。角质形成的细胞,通过生长分化实现了表皮的自我更新 [7]。表皮的分层结构提供了抵御有害外部因素的第一道防线。皮肤的另一条保护线是黑色素细胞。黑色素是由这些细胞合成的色素,通过吸收紫外线来阻止紫外线辐射渗透到表皮层。人体真皮一般是由细胞外基质和成纤维细胞所组成。成纤维细胞产生的胶原蛋白纤维成分、弹性纤维、网状纤维成分和基质成份,以保持皮肤的强度和弹力 [8]。

皮肤光老化的临床及组织学特征

光老化皮肤的重要症状为色素沉着,皮肤表层凹凸不平,较深的皱褶和明显的毛细血管扩大,皮脂腺分泌物丰富而形成结节性囊肿、痤疮等,并导致皮肤的癌前病变及恶性肿瘤的生长 [9]。组织学特点为表皮层不规则加厚 [10];在角质中新形成的细胞也出现了凋亡;朗格汉斯细菌的数量显著下降;黑素细胞的数量和合成黑色素能力明显增强。真皮层结构显著增厚;而人体真皮内成纤维细胞产生增殖的能力则显著下降;前胶原合成能力低下,胶原纤维结构的缺失较严重;胶原、弹力蛋白等细胞外基质的变性或大量积聚 [11] [12]。光老化皮肤中的血管壁增厚,毛细血管网排列失调,毛细血管周围充满炎性细胞浸润 [13]。

3. 皮肤光老化的机制

皮肤光老化包括多种信号转导通道和各种信息分子。皮肤上光老化的信号转导通道,主要分为MAPK信号通道、NF-κB信号通路、Nrf2/ARE信号通路、TGF-β/Smad信号通路,各条通路之间纵横交错、彼此关联。分子机理主要涉及DNA破坏、氧化应激、炎症反应、胶原结构变化和细胞凋亡 [14]。

3.1. DNA损伤

紫外线辐射可对DNA造成直接或间接的损伤。UVB可直接损害DNA,并形成了环丁烷嘧啶二聚(CPD)和6-4嘧啶酮(6-4PP)的等光物质,损伤DNA双链结构,并导致小分子的重排布,最后导致对DNA的破坏。大量紫外照射下形成的ROS可能会对核DNA产生抗氧化破坏,而经由单碱或嘧啶核苷修饰、链间交联、DNA-蛋白质交联,以及净化或嘧啶位点形成而产生大量的胸腺嘧啶乙二醇和8-氧负离子鸟嘌啶等。在胞嘧啶(C)、胸腺嘧啶(T)、腺嘌啶(A)、鸟嘌啶(G)这四个碱基中,G的氧化还原电位较低,最容易被抗氧化,8-羟基鸟嘌啶(8-oxoG)是G的主要抗氧化代谢物,常被用作DNA破坏的目标生物标记 [15]。在正常情况下,癌症抑制基因p53在G1阶段停止细胞周期,并在复制前通过DNA修复酶及时修复突变基因。一旦基因组损伤严重到无法完全恢复,则p53就能够透过调控凋亡基因组中Bax和Bcl-2的转录,来引起损伤细菌的凋亡。这种过程在细菌DNA的损伤恢复中非常关键。但是,由于长时间暴露的紫外光可以引起表皮角质细胞中的p53基因突变,细菌对细胞或对细胞凋亡显示出了耐受性,线粒体经历功能障碍,而携带突变基因的细菌DNA则在没有恢复的状况下进行了细胞分裂循环,进而引起了恶性细菌生长和新陈代谢障碍,从而促使了光相关皮肤癌症的出现,如鳞状细胞癌(SCC)、基底细胞癌(BCC)和皮肤黑色素瘤 [16] [17] [18]。Langerhans细胞是表皮中重要的抗原呈现细胞。紫外线可以减少兰格汉斯细胞的数量和抗原呈现功能,从而诱导免疫抑制并导致皮肤肿瘤逃避身体的免疫监测 [19]。

3.2. 氧化应激

抗氧化反应是指机体内产生的高活性分子(ROS)数量过多,超过了机体的清除能量,从而造成了机体的氧化–抗氧化体系功能失调,所造成的细胞及组织破坏 [15]。ROS的形成,主要经由内源性与外源性二种途径 [20]。内源性途径中的ROS主要来自于线粒体,由分子氧经线粒体内膜的呼吸功能链复合体传导而形成。外源性传染途径中的ROS则大多来自于UV照射,即皮肤细胞内的发色基团在吸取了UV辐射能量之后,再与氧分子作用,形成了ROS [21] [22]。ROS (例如单体氧、过氧化氢、过氧化物)能够反应并损害其通路中的大多数分子,例如细胞、蛋白质或DNA的脂质膜。另外,ROS影响细胞表面的受体,尤其是细胞表面生长机制(EGF)、角质细胞生长因子(KGF)、白细胞介素(IL)-1,以及肿瘤坏死因子(TNF)-α的受体。此外,ROS会损害膜脂质,导致神经酰胺的释放,然后激活AP-1。正常身体中同时具有酶与非酶二类抗氧化体系,而酶类抗氧化体系又分为超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(PRx)、谷胱甘肽过氧化物酶(GSH-Px)、谷胱甘肽(GSH)等;非酶类的抗氧化系统,含有维生素C、维生素E、类胡萝卜素和多酚等 [23] [24]。生理条件下,机体内的氧化和抗氧化体系都处在均衡状态,但UV光照后会产生的过多的ROS,从而打破了氧化和抗氧化体系的均衡,导致了机体内产生光氧化应激。皮肤光老化的另一种主要的原因是由于过氧化应激,ROS可能破坏了蛋白质、脂质以及DNA,从而直接损坏了皮下组织;同时ROS也可能作为第二信使开启了下游一系列重要的信息传递通路,刺激(NF-κB、活化蛋白-1 (AP-1)等转录因子调控促炎性细胞因子及基质金属蛋白酶(MMPs)的表现,进而导致发炎性反应和细胞外基质金属的降解 [25]。

3.3. 炎症反应

UV照射还可促使表皮巨噬细胞产生如白细胞介素IL-1α、IL-1β、IL-6和癌细胞坏死作用因子(TNF-α)等各种促炎性细胞因子,活化NF-κB信号通道,从而促使环氧合酶-2 (COX-2)和前列腺素E2 (PGE2)等的产生表达 [26]。NF-κB是一种多向性调节的真核转录因子。生物状况下,在细胞质内与NF-κB和NF-κB的激酶(IκB)相结合,以非活性状态出现 [27]。UV辐射后形成的TNF-α与其受体TNF-RI结合,并激发NF-κB抑制激酶激酶(IKK),导致IκB的泛素化和降解,并放出NF-κB,将其转移入核,从而启动促炎性细胞激素基因的转录,引起皮肤急性发炎损害,最后引起光衰老的产生 [28]。

3.4. 胶原结构改变

UV射线还能刺激细菌表层上的关键受体功能,如表皮生长因子受体(EGFR)等,直接影响丝裂原活化蛋白激酶(MAPK)、磷酸肌醇-3-激酶/蛋白质激酶B (PI3K/Akt)等信息通道,上调AP负一的表达,进而诱发MMPs的人工合成,并且阻止转化生长因子-β (TGF-β)与其受体的融合,使胶原质人工合成更加困难。MMPs负责胶原蛋白、纤维内酯、弹性蛋白和蛋白聚糖等ECM蛋白的降解。MMP-1、MMP-3和MMP-9的过度产生导致这些蛋白质的过度降解有助于皮肤的光老化,从而通过胶原蛋白和弹性蛋白的光解、光变换和光氧化导致皮肤形成皱纹和并导致皮肤的下垂 [29]。

3.5. 细胞凋亡

细胞凋亡是指为了保持细胞的内环境平衡,细胞进行了由基因所调控的自发、有序的过程凋亡 [30]。UV辐照后所导致细胞坏死的形成,大致上可经由以下二个路径实现:一是透过外源性途径,形成受体依赖性;二是利用线粒体介导的内源性途径 [31]。UV辐射诱发的外源性信号分子,如TNF-α、Fas配体(Fas-L)与其受体结合,活性零点五胱氨酸天冬氨酸蛋白酶(Caspase)-8,进而活性其下游效应蛋白质Caspase-3,最后引起神经细胞凋亡 [32]。内源性途径中线粒体膜通透性的变化也是引起坏死的关键部分,而且B淋巴瘤-2基因组(Bcl-2)家族就扮演着很关键的重要人物,Bcl-2家族还含有抗凋亡蛋白和促凋亡蛋白。UV辐射活性了BCl负二家族中的抗凋亡蛋白质BCl-2,与促凋亡蛋白质Bax生成同形和异型二聚物,从而增强了对线粒体膜的渗透性,同时线粒体内的细菌色素C (Cyto C)被大量放出到细菌质中与凋亡酶激发作用因子(Apaf-1)融合而生成多聚物,之后Apaf负一再由于募集Caspase-9前体而与Caspase-9融合并生成凋亡小体,进而活性了Caspase-3,从而诱发细胞凋亡,最后引起了皮肤坏死 [33]。

4. 总结

皮肤为人类最大的脏器,其老化机理受国内外诸多原因影响。目前,关于皮肤光衰老机理的认识早已从外观层次发展到了分子层次。无论外源性或内源性刺激剂,都可以通过作用于各个环节来影响或抑制光氧化应激系统反应、免疫反应、DNA损伤、细胞凋亡、炎症反应,发挥光衰老保护的功能。

参考文献

[1] Rabe, J.H., Mamelak, A.J., Mcelgunn, P.J., et al. (2006) Photoaging: Mechanisms and Repair. Journal of the American Academy of Dermatology, 55, 1-19.
https://doi.org/10.1016/j.jaad.2005.05.010
[2] Cavinato, M. and Jansen-Durr, P. (2017) Molecular Mechanisms of UVB-Induced Senescence of Dermal Fibroblasts and Its Relevance for Photoaging of the Human Skin. Experimental Gerontology, 94, 78-82.
https://doi.org/10.1016/j.exger.2017.01.009
[3] Dorazio, J., Jarrett, S., Amaro-Ortiz, A., et al. (2013) UV Radiation and the Skin. International Journal of Molecular Sciences, 14, 12222-12248.
https://doi.org/10.3390/ijms140612222
[4] Antony, R.Y. (2006) Acute Effects of UVR on Human Eyes and Skin. Progress in Biophysics and Molecular Biology, 92, 80-85.
https://doi.org/10.1016/j.pbiomolbio.2006.02.005
[5] 朱姗, 赵志月, 王子静, 等. 皮肤老化分子机制及中药防治皮肤老化研究进展[J]. 天津中医药大学学报, 2021, 40(4): 431-439.
[6] Gruber, F., Kremslehner, C., Eckhart, L., et al. (2020) Cell Aging and Cellular Senescence in Skin Aging—Recent Advances in Fibroblast and Keratinocyte Biology. Experimental Gerontology, 130, Article ID: 110780.
https://doi.org/10.1016/j.exger.2019.110780
[7] Eckhart, L. and Zeeuwen, P.L.J.M. (2018) The Skin Barrier: Epidermis versus Environment. Experimental Dermatology, 27, 805-806.
https://doi.org/10.1111/exd.13731
[8] Mussard, E., Jousselin, S., Cesaro, A., et al. (2020) Andrographis paniculata and Its Bioactive Diterpenoids Protect Dermal Fibroblasts against Inflammation and Oxidative Stress. Antioxidants, 9, 64-67.
https://doi.org/10.3390/antiox9050432
[9] Helfrich, Y.R., Sachs, D.L. and Voorheesl, J.J. (2008) Overview of Skin Aging and Photoaging. Dermatology Nursing, 20, 177-183.
[10] Chaiprasongsuk, A., Janjetovic, Z., Kim, T.K., et al. (2019) Protective Effects of Novel Derivatives of Vitamin D3 and Lumisterol against UVB-Induced Damage in Human Keratinocytes Involve Activation of Nrf2 and p53 Defense Mechanisms. Redox Biology, 2, Article ID: 101206.
https://doi.org/10.1016/j.redox.2019.101206
[11] Varani, J., Warner, R.L., Gharaee-Kermani, M., et al. (2000) Vitamin A Antagonizes Decreased Cell Growth and Elevated Collagen-Degrading Matrix Metalloproteinases and Stimulates Collagen Accumulation in Naturally Aged Human Skin. The Journal of Investigative Dermatology, 114, 480-486.
https://doi.org/10.1046/j.1523-1747.2000.00902.x
[12] Braverman, I.M. and Fonferko, E. (1982) Studies in Cutaneous Aging: I. The Elastic Fiber Network. The Journal of Investigative Dermatology, 78, 434-443.
https://doi.org/10.1111/1523-1747.ep12507866
[13] Elias, P.M., Goerke, J. and Frieng, D.S. (1977) Mammalian Epidermal Barrier Layer Lipids: Composition and Influence on Structure. The Journal of Investigative Dermatology, 69, 535-546.
https://doi.org/10.1111/1523-1747.ep12687968
[14] 何丽, 林雪霏, 陈慧, 等. 皮肤光老化机制及治疗制剂研究进展[J]. 实用皮肤病学杂志, 2020, 13(5): 293-296.
[15] Sachw, D.L., Varani, J., Chubb, H., et al. (2019) Atrophic and Hypertrophic Photoaging: Clinical, Histologic and Molecular Features of 2 Distinct Phenotypes of Photoaged Skin. Journal of the American Academy of Dermatology, 81, 480-488.
https://doi.org/10.1016/j.jaad.2019.03.081
[16] Beani, J.C. (2014) Ultraviolet A-Induced DNA Damage: Role in Skin Cancer. Bulletin de l’Academie Nationale de Medecine, 198, 273-295.
https://doi.org/10.1016/S0001-4079(19)31342-1
[17] Birch-Machin, M.A. and Swalwell, H. (2010) How Mitochondria Record the Effects of UV Exposure and Oxidative Stress Using Human Skin as a Model Tissue. Mutagenesis, 25, 101-107.
https://doi.org/10.1093/mutage/gep061
[18] Rebel, H.G., Bodmann, C.A., van de Glind, G.C., et al. (2012) UV-Induced Ablation of the Epidermal Basal Layer Including p53-Mutant Clones Resets UV Carcinogenesis Showing Squamous Cell Carcinomas to Originate from Interfollicular Epidermis. Carcinogenesis, 33, 714-720.
https://doi.org/10.1093/carcin/bgs004
[19] Damian, D.L., Matthews, Y.J., Phan, T.A., et al. (2011) An Action Spectrum for Ultraviolet Radiation-Induced Immunosuppression in Humans. British Journal of Dermatology, 164, 657-659.
https://doi.org/10.1111/j.1365-2133.2010.10161.x
[20] Woolley, J.F., Stanicka, J. and Cotter, T.G. (2013) Recent Advances in Reactive Oxygen Species Measurement in Biological Systems. Trends in Biochemical Sciences, 38, 556-565.
https://doi.org/10.1016/j.tibs.2013.08.009
[21] Lephart, E.D. (2016) Skin Aging and Oxidative Stress: Equol’s Anti-Aging Effects via Biochemical and Molecular Mechanisms. Ageing Research Reviews, 3, 36-54.
[22] Hseu, Y.C., Chang, C.T., Gowrisankar, Y.V., et al. (2019) Zerumbone Exhibits Antiphotoaging and Dermatoprotective Properties in Ultraviolet A-Irradiated Human Skin Fibroblast Cells via the Activation of Nrf2/ARE Defensive Pathway. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 4098674.
https://doi.org/10.1155/2019/4098674
[23] Rosette, C. and Karin, M. (1996) Ultraviolet Light and Osmotic Stress: Activation of the JNK Cascade through Multiple Growth Factor and Cytokine Receptors. Science, 274, 1194-1197.
https://doi.org/10.1126/science.274.5290.1194
[24] Bouaayed, J. and Bohn, T. (2010) Exogenous Antioxidants-Double Edged Swords in Cellular Redox State: Health Beneficial Effects at Physiologic Doses versus Deleterious Effects at High Doses. Oxidative Medicine and Cellular Longevity, 3, 228-237.
[25] Russell, E.G. and Cotter, T.G. (2015) New Insight into the Role of Reactive Oxygen Species (ROS) in Cellular Signal-Transduction Processes. International Review of Cell and Molecular, 319, 221-254.
https://doi.org/10.1016/bs.ircmb.2015.07.004
[26] Hill, S. and Van Remmen, H. (2014) Mitochondrial Stress Signaling in Longevity: A New Role for Mitochondrial Function in Aging. Redox Biology, 48, 936-944.
https://doi.org/10.1016/j.redox.2014.07.005
[27] Bosch, R., Philips, N., Searez-Perez, J.A., et al. (2015) Mechanisms of Photoaging and Cutaneous Photocarcinogenesis and Photoprotective Strategies with Phytochemicals. Antioxidants (Basel, Switzerland), 4, 248-268.
https://doi.org/10.3390/antiox4020248
[28] Sachs, D.L., Varani, J., Chubb, H., et al. (2019) Atrophic and Hypertrophic Photoaging: Clinical, Histologic and Molecular Features of 2 Distinct Phenotypes of Photoaged Skin. Journal of the American Academy of Dermatology, 9, 11-17.
[29] Wang, Y., Yang, J. and Yi, J. (2012) Redox Sensing by Proteins: Oxidative Modifications on Cysteines and the Consequent Events. Antioxidants & Redox Signaling, 16, 649-657.
https://doi.org/10.1089/ars.2011.4313
[30] Raj, D., Brash, D.E. and Grossman, D. (2006) Keratinocyte Apoptosis in Epidermal Development and Disease. The Journal of Investigative Dermatology, 126, 243-257.
https://doi.org/10.1038/sj.jid.5700008
[31] Lauri, A., Pompilio, G. and Capogrossi, M.C. (2014) The Mitochondrial Genome in Aging and Senescence. Ageing Research Reviews, 18, 1-15.
https://doi.org/10.1016/j.arr.2014.07.001
[32] Katiyar, S.K. (2007) UV-Induced Immune Suppression and Photocarcinogenesis: Chemoprevention by Dietary Botanical Agents. Cancer Letters, 255, 1-11.
https://doi.org/10.1016/j.canlet.2007.02.010
[33] Wang, P.W., Cheng, Y.C., Huang, Y.C., et al. (2019) Red Raspberry Extract Protects the Skin against UVB-Induced Damage with Antioxidative and Anti-Inflammatory Properties. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 9529676.