慢性肾脏病患者脑卒中的发生机制及治疗进展
Mechanisms and Treatment Progress of Stroke in Patients with Chronic Kidney Disease
DOI: 10.12677/ACM.2022.125545, PDF, HTML, XML, 下载: 330  浏览: 457 
作者: 刘 佩, 钟 玲:重庆医科大学,重庆
关键词: 慢性肾脏病卒中发生机制治疗Chronic Kidney Disease Stroke Mechanisms Treatment
摘要: 慢性肾脏病(Chronic kidney disease, CKD)已成为快速增长的全球健康问题,而CKD患者脑血管疾病所致的负担引起越来越多的关注。因CKD患者卒中后预后更差、死亡率更高,为肾脏病和神经科医师的临床工作增加了更大的挑战。本文就CKD和脑卒中的关系作以下综述。
Abstract: Chronic kidney disease (CKD) has become a rapidly growing global health problem, and the burden of cerebrovascular disease in patients with CKD has attracted increasing attention. The poorer prognosis and higher mortality after stroke in patients with CKD have added greater challenges to the clinical work of nephrologists and neurologists. This article reviews the relationship between CKD and stroke as follows.
文章引用:刘佩, 钟玲. 慢性肾脏病患者脑卒中的发生机制及治疗进展[J]. 临床医学进展, 2022, 12(5): 3777-3786. https://doi.org/10.12677/ACM.2022.125545

1. 引言

根据全球疾病负担研究,CKD的发病率和死亡率随着人口老龄化的增长而增加,相关的代谢危险因素也呈现出上升趋势 [1]。多数CKD患者死于CKD引起的心血管疾病(包括中风)而不是终末期肾病(End-stage renal disease, ESRD)本身 [2] [3] [4] [5]。因此人们越来越关注CKD患者心脏并发症和脑血管疾病的高发病率,本文就肾功能不全对脑卒中影响的研究现状进行综述。

2. CKD与脑卒中的关系

2.1. 流行病学

脑血管疾病和卒中在CKD的所有阶段都很常见,即使在早期CKD患者中,包括白质病变、隐性梗死和脑萎缩等在内的大脑病变也比普通(非CKD)人群更多见 [6]。在CKD患者中,卒中是第三大死亡原因,ESRD患者因缺血性和出血性卒中住院的风险高出10倍 [7] [8]。CKD和卒中有许多共同的危险因素,如老年、糖尿病和高血压。而且已有越来越多的研究证明,CKD中肾小球滤过率(Glomerular filtration rate, GFR)的降低及蛋白尿的存在是卒中包括缺血性和出血性卒中的独立危险因素 [6] [9] [10] [11]。

2.1.1. GFR的降低与卒中

低估算的肾小球滤过率(estimated glomerular filtration rate, eGFR)是否是独立于传统心血管危险因素的卒中危险因素,存在相互矛盾的流行病学证据。在对来自四项基于人群的纵向研究的荟萃分析中,eGFR < 60 mL/min/1.73m2的人群卒中发病率(10.3/1000)高于eGFR ≥ 60 mL/min/1.73m2的人群(3.4/1000)。但调整传统的心血管危险因素后,这种有较低eGFR的卒中超额风险在统计学上并不显着差异(风险比[HR] 1.17,95% CI 0.95~1.44)。也有认为这种风险相关性的衰减是统计能力不足的结果 [12]。相反的,在此之后的一项对33项前瞻性研究和对83项研究进行大型荟萃分析发现低eGFR与卒中风险独立相关 [13] [14]。在韩国进行的一项全国性的回顾性队列研究也发现,在调整多个传统危险因素后,缺血性卒中的风险随着eGFR的降低男性增加,出血性卒中风险男女之间没有显著的关系 [15]。因此GRF与卒中的相关性仍需要更多的研究来进一步证明。

2.1.2. 蛋白尿与卒中

蛋白尿已被证实和卒中之间有强且独立的关系。在对140,231人的10项前瞻性队列研究的荟萃分析发现,蛋白尿患者与无蛋白尿的患者相比,卒中风险增加了71%。调整了已知的心血管危险因素后,即使蛋白尿和卒中之间的关系减弱了30%,蛋白尿所致的额外卒中风险仍具有统计学意义(RR, 2.81 [95% CI, 1.78 to 4.42] vs RR, 1.94 [95% CI, 1.37 to 2.75]) [16]。近期近200万名有超过26,000起中风事件的参与因素进行的荟萃分析得出:蛋白尿是中风的风险 [17]。在一项meta分析中,与微量白蛋白尿患者相比(RR 1.58, 95% CI 1.39~1.80),大量白蛋白尿患者发生卒中的风险更高(RR 2.65, 95% CI 2.25~3.14) [18]。在一项中风地理和种族差异(REGARDS)的全国性队列研究中发现,蛋白尿增加卒中风险的程度与种族差异有关:在黑人中,较高的尿白蛋白/肌酐比值(urinary albumin to creatinine ratio, UACR)与卒中风险相关,且独立于传统风险因素和eGFR,而在白人中这种关联不明显 [19]。

2.1.3. 透析与卒中

透析会增加卒中的风险。早在20世纪90年代即报道透析患者中出血性卒中的发生率高于缺血性卒中。在一项日本的前瞻性研究发现,维持性透析患者较普通人群,卒中的相对风险为5.2,脑梗死为2.0,脑出血为10.7 [20]。后续的研究也证明透析治疗的ESRD患者发生脑卒中的风险是一般人群的4~10倍,尤其第一年透析的脑卒中风险显著增加 [7] [8] [21]。大约三分之二的75岁以上的透析患者将在中风后一年内死亡 [22]。除此之外,CKD和ESRD患者往往遭受功能预后更差、发病率和死亡率更高的中风 [6] [23] [24] [25]。Kumai等人对来自日本多个卒中中心登记处的3778名首次发生缺血性脑卒中的研究发现,CKD患者入院时的NIHSS评分明显高于非CKD患者。在调整了可疑的混杂因素后,CKD患者住院期间NIHSS评分增加≥2分的风险增加49%,住院死亡率增加138% [23]。在对232,236患者的队列研究发现,即使在调整了合并症和初始NIHSS评分,eGFR < 15 mL/min/1.73m2未透析患者,急性缺血性卒中后住院死亡的风险也比肾功能正常的患者高2.5倍 [24]。在有脑出血(intracerebral hemorrhage, ICH)患者中,与无肾功能损害的患者相比,eGFR < 45 mL/min/1.73m2的患者血肿体积增加3倍,死亡风险增加4倍 [26]。其可能的机制有以下几方面。

2.2. CKD合并脑卒中的发生机制

2.2.1. 脑血管病与肾脏疾病相似的解剖学结构

肾脏和大脑对血管损伤具有独特的易感性,这两个器官的微血管调节在解剖学和功能上相似:都是高血流量,依赖于局部的自我调节。“应变血管假说”被认为是CKD和中风之间关联的可能机制。髓旁肾单位的肾小球传入小动脉和大脑穿孔动脉都是由大的高压动脉直接产生的小而短的血管。当动脉暴露在高压下,必须保持强烈的血管张力,在短距离内提供一个较大的压力梯度 [27]。这种血管被称为“应变血管”,极易发生内皮功能障碍和脂质透明变性,与肾小动脉硬化类似,脑血管中形成脂质透明变性,这是腔隙性卒中的一个特征性发现。脂质透明变性损害大脑自身调节,减少局部脑血流,导致这些皮质下穿孔动脉供应区域的缺血性或出血性卒中发生率较高 [28] [29]。因此微量白蛋白尿反映了近髓肾单位入球小动脉的损伤,也是脑小血管损伤的早期标志 [30] [31]。

2.2.2. CKD患者中慢性炎症、氧化应激与内皮功能障碍对卒中的影响

CKD患者各阶段均存在慢性微炎症。在CKD早期,血液中的促炎因子IL-6、TNF-a、骨保护素、骨钙素、骨桥蛋白和成纤维细胞生长因子23水平(fibroblast growth factor-23, FGF-23)明显升高 [32] [33] [34]。在中晚期CKD患者中上述炎症因子是临床不良结局和死亡的有力预测因子 [35]。尿毒症毒素能促进巨噬细胞向有害的促炎性M1表型转化,并激活小胶质细胞以促进脑卒中后脑损伤发生,也能促进CKD患者中的氧化应激和内皮功能障碍 [36] [37]。内皮细胞产生的舒血管物质一氧化氮(NO),前列环素和超极化松弛因子减少,而且减少抑制血小板聚集、平滑肌细胞增殖、单核细胞黏附和黏附分子的表达,血管壁易受动脉粥样硬化和血栓形成的影响 [38]。以氧化应激诱导的NO利用降低为特征的内皮功能障碍被认为是动脉粥样硬化发病机制的早期事件 [39],也是导致CKD患者动脉硬化和动脉僵硬的重要因素 [40]。多种因素如高同型半胱氨酸血症、尿毒症毒素等可通过增加氧化应激加重动脉僵硬 [39] [41]。从而损害血脑屏障(blood-brain barrier, BBB)的完整性并促进白细胞浸润,促进尿毒症毒素进入中枢神经系统 [42]。在肾脏远端肾小管中表达代表的Klotho蛋白是FGF-23的核心受体,调节钙和磷的代谢以及维持内皮和血管平滑肌细胞功能。随着CKD的进展,Klotho蛋白表达降低可能导致血管钙化和内皮功能障碍,可能导致卒中发生 [43] [44]。

2.2.3. CKD患者的动脉硬化和血管钙化

CKD患者中慢性炎症、氧化应激、内皮功能障碍、尿毒症毒素、钙磷代谢失调等因素已被证实可加速全身血管的动脉硬化及血管钙化 [40] [41] [43] [45] [46] [47]。在晚期CKD患者中,高磷血症和继发性甲状旁腺功能亢进会导致骨吸收与形成障碍,阻止骨骼作为过量钙和磷的储存库,钙随之沉积在异位软组织部位,包括血管系统 [48] [49]。另一方面,能抑制动脉壁钙化的内源性因素(包括Klotho,基质谷氨酸蛋白,焦磷酸盐和胎球蛋白-A)在CKD患者中缺乏可能是加重血管钙化的另一重要原因 [49] [50] [51]。肾功能不全的程度与颈动脉粥样硬化的程度有关,颈动脉粥样硬化既是未来心血管疾病发生的预测指标,也是大脑血栓直接来源。在一项横断面的研究显示,颈动脉内膜-中膜厚度(carotid intima-media thickness, CA-IMT)与肾功能呈负相关 [10] [52]。在一项包含3364名参与者的社区队列研究中,多变量分析显示肾功能是CA-IMT增加、亚临床动脉粥样硬化进展以及致命和非致命性血管事件增加的有力预测因素,与传统和非传统心血管危险因素无关 [53]。与此同时,肾功能下降与异质性斑块的显著增加有关,轻度肾功能异常也是异质性斑块的潜在独立危险因素 [5] [54] [55]。一项基于“中国高血压调查”的横断面研究发现CKD与颅内动脉狭窄(intracranial artery stenosis, ICAS)相关,且这种相关性与后循环ICAS关系更密切 [56]。

2.2.4. CKD患者脑自身调节受损和脑血流改变

由于肾脏和大脑具有相似的微血管系统和血管调节,都由低阻力血管回路灌注,为保持收缩期和舒张期连续的高容量血流,脑血管系统显示出强大的自我调节能力,以尽量减少低血压状态下的低灌注和高血压状态下的高灌注 [28] [57]。脑自身调节是一种复杂的内在调控机制,通过改变脑血管阻力以顺应血压、脑灌注压或代谢需求的变化来维持恒定的脑血流量 [58] [59]。肾脏疾病通过损害脑自身调节、重塑脑血管系统和减少脑血流量而对卒中风险产生独特影响 [57] [60]。CKD患者血管透明样变替代小动脉平滑肌会增加血管壁僵硬,损害自身调节 [28] [50]。一项针对急性缺血性卒中后患者的前瞻性研究发现,eGFR降低的个体的大脑自我调节能力较差,并与缺血性卒中向出血性转化的风险增加相关,出血转化可能是由于自身调节受损的突破性高灌注和微血管损伤 [61]。eGFR降低和自身调节受损的结合降低了卒中后出现良好功能结局的可能性。灌注相关的脑损伤在肾脏疾病患者中可能更常见,尤其是接受透析治疗的患者。来自荷兰的一项创新研究对年龄 ≥ 65岁的稳定血液透析患者在进行透析时进行了3次PET-CT扫描发现,在透析期间,所有大脑区域的脑血流量下降了10% ± 15%,其中血流量从平均每分钟34.5 ml/100g下降到30.5 ml/100g [62]。这种对本应稳定的、自身调节的脑血流的破坏被假设为使血液透析患者易患卒中的机制。

2.2.5. CKD患者心房颤动与血栓形成

CKD患者发生心房颤动(atrial fibrillation, AF)的风险较高 [63] [64] [65]。晚期CKD患者的AF患病率为4%~21%,透析患者为7%~27%,这明显高于普通人群。反之,AF的存在使CKD和ESRD患者都具有较高的卒中风险 [65]。CKD患者中FGF23升高与AF发生风险的增加独立相关。FGF-23与左心室肥厚、心房扩大和心力衰竭事件发生有关 [66]。CKD与左心房血栓形成环境有关。在接受经食管超声心动图检查的非瓣膜性AF患者中血栓形成环境的患病率随着eGFR的下降而增加 [5]。CKD中受损的内皮细胞会释放异常的血栓形成和抗血栓形成介质,如组织因子、凝血因子fVIII、血栓调节蛋白、内皮蛋白c受体和血管性血友病因子(vWF),从而改变血液成分和血流动力学特性 [67]。机体血流动力学变化随着肾功能不全的严重程度而加重,促进血栓形成、脑出血或混合脑血管事件。因此,有学者建议在血栓栓塞风险预测评分中纳入肾功能的测量,包括CHA2DS2-VASc和CHA2ds2-VAK评分。CKD患者房颤的高发病率所致的心源性栓塞及促血栓形成作用可能是其卒中风险增加的机制之一。

2.2.6. CKD患者凝血系统功能障碍及抗凝药物

CKD患者特别容易发生出血性卒中。出血性卒中风险增加的一个可能机制是脑微出血的易感性 [68]。可能的机制是尿毒症改变了内皮细胞中的肌动蛋白骨架和紧密连接蛋白,使CKD患者容易发生微出血 [69]。同时,透析时反复使用抗凝药物会增加脑微出血和脑出血的风险 [70] [71]。一项评价CKD患者新型凝血和血小板功能测定方法的横断面研究发现,在CKD5期患者中,多电极聚集度测定法(multiple electrode aggregometry, MEA)检测患者二磷酸腺苷和凝血酶受体激活肽显著低于健康对照组,提示血小板聚集缺陷,而且eGFR是血小板功能障碍和高凝状态的独立决定因素 [72]。

2.2.7. 遗传因素

CKD的亚洲和西非人卒中的风险高于其他人种。亚洲血统的3期(或更高)CKD患者的卒中风险显著增加。目前尚不清楚遗传(基因)、环境或这些因素的混合是否会促进风险 [19] [73] [74] [75]。近期有研究报道,载脂蛋白L1基因(APOL1)与心血管疾病(CVD)的风险增加独立相关 [76] [77]。在有非洲血统的患者中,APOL1中的肾风险变异可能增加肾脏疾病和卒中的风险 [74]。REGARDS的亚组分析报告称,携带APOL1肾脏风险基因型(2个G1和/或G2变异体)与小血管缺血性卒中独立相关 [78]。近来发现载脂蛋白E(APOE)、COL4A1突变等与脑血管病风险增加有关 [5]。因此有关遗传机制是否在CKD患者的卒中高风险中产生作用需要进一步探究。

3. CKD患者脑卒中的治疗

CKD和ESRD患者脑卒中的预防和管理由于风险和合并症的增加而变得困难和复杂。与一般人群相比,CKD各阶段的中风后结局都较差。Dad和Weiner等人 [6] 建议,对于不需要透析的CKD患者,卒中的预防和管理可以与普通人群的方法相似。包括已知的危险因素,如肥胖、高血压和糖尿病的管理,对降低卒中风险至关重要 [79] [80]。改善GFR和减少蛋白尿的策略也有效降低该人群卒中的风险。对CKD 1期和2期患者可使用阿司匹林治疗,但在更高阶段是否使用仍存在争议 [81]。对于ESRD患者,基于普通人群中风预防和管理的药物,如他汀类药物、抗血小板药物和华法林等,已被证明对CKD 5期患者的益处甚微,甚至可能造成损害 [11]。ESRD患者在急性中风的情况下需积极的治疗。在没有禁忌症的情况下,在最初3小时内出现的急性缺血性卒中患者以及在最初4.5小时内出现的多数患者应接受溶栓治疗 [6]。组织型纤溶酶原激活剂(tPA)阿替普酶是急性缺血性卒中中研究最充分的溶栓剂。没有根据肾功能调整剂量,阿替普酶说明书指出使用的后出血风险在某些情况下可能会增加,包括“严重肾病” [6] [82]。有研究回顾了7168名急性卒中患者使用组织纤溶酶原激活剂的数据,其中28%患有CKD。CKD患者发生脑出血的风险增加,并且在3个月时更有可能出现较差的预后 [83]。出于安全考虑,大型临床试验通常排除了晚期肾功能不全和透析的患者。因此,溶栓治疗对合并肾功能不全的急性缺血性卒中患者的临床结果是有益还是有害仍存在争议。然而,近年来包括血栓切除术和支架置入术等血运重建和血管内设备的进展使动脉内治疗(intra-arterial therapy, IAT)成为一种有价值和有效的选择,通常与已建立的溶栓治疗相结合 [6] [84]。目前CKD患者急性脑卒中最有效管理的证据仍然缺乏,目前针对卒中的治疗需根据个体患者的背景进行优化,改善此类患者预后及降低全球负担仍面临着巨大挑战 [85]。

4. 讨论

CKD和ESRD的患病率不断增加,卒中的风险也在增加,与一般人群相比,CKD各个阶段的中风后预后都较差。可能的机制包括氧化应激、慢性炎症、尿毒症、脑血流失调、血管钙化、动脉硬化、以及血液透析患者使用抗凝剂等。CKD和ESRD患者脑卒中的预防和管理是复杂的。目前还没有针对CKD患者卒中的一级预防与治疗措施,由于治疗干预的风险和副作用增加,也缺乏高质量的大型随机对照试验来指导治疗。因此,迫切需要有效的无创筛查和一级预防工具,以尽量减少该人群卒中相关的发病率和死亡率。寻找新的有效靶点以及改善这类患者的预后应该是未来研究的主题。

参考文献

[1] Fraser, S.D.S. and Roderick, P.J. (2019) Kidney Disease in the Global Burden of Disease Study 2017. Nature Reviews Nephrology, 15, 193-194.
https://doi.org/10.1038/s41581-019-0120-0
[2] Toyoda, K. (2015) Cerebral Small Vessel Disease and Chronic Kidney Disease. Journal of Stroke, 17, 31-37.
https://doi.org/10.5853/jos.2015.17.1.31
[3] Packham, D.K., Alves, T.P., Dwyer, J.P., et al. (2012) Relative Inci-dence of ESRD versus Cardiovascular Mortality in Proteinuric Type 2 Diabetes and Nephropathy: Results from the DIAMETRIC (Diabetes Mellitus Treatment for Renal Insufficiency Consortium) Database. American Journal of Kidney Diseases, 59, 75-83.
https://doi.org/10.1053/j.ajkd.2011.09.017
[4] Vashistha, V., Lee, M., Wu, Y.L., et al. (2016) Low Glomerular Filtration Rate and Risk of Myocardial Infarction: A Systematic Review and Meta-Analysis. International Journal of Cardiology, 223, 401-409.
https://doi.org/10.1016/j.ijcard.2016.07.175
[5] Kelly, D. and Rothwell, P.M. (2020) Disentangling the Multiple Links between Renal Dysfunction and Cerebrovascular Disease. Journal of Neurology, Neurosurgery & Psychiatry, 91, 88-97.
https://doi.org/10.1136/jnnp-2019-320526
[6] Dad, T. and Weiner, D.E. (2015) Stroke and Chronic Kid-ney Disease: Epidemiology, Pathogenesis, and Management across Kidney Disease Stages. Seminars in Nephrology, 35, 311-322.
https://doi.org/10.1016/j.semnephrol.2015.06.003
[7] Seliger, S.L., Gillen, D.L., Longstreth, W.T., et al. (2003) Elevated Risk of Stroke among Patients with End-Stage Renal Disease. Kidney International, 64, 603-609.
https://doi.org/10.1046/j.1523-1755.2003.00101.x
[8] Grams, M.E., Yang, W., Rebholz, C.M., et al. (2017) Risks of Adverse Events in Advanced CKD: The Chronic Renal Insufficiency Cohort (CRIC) Study. American Journal of Kidney Diseases, 70, 337-346.
https://doi.org/10.1053/j.ajkd.2017.01.050
[9] Weiner, D.E., Tighiouart, H., Stark, P.C., et al. (2004) Kidney Disease as a Risk Factor for Recurrent Cardiovascular Disease and Mortality. American Journal of Kidney Diseases, 44, 198-206.
https://doi.org/10.1053/j.ajkd.2004.04.024
[10] Toyoda, K. and Ninomiya T. (2014) Stroke and Cerebro-vascular Diseases in Patients with Chronic Kidney Disease. The Lancet Neurology, 13, 823-833.
https://doi.org/10.1016/S1474-4422(14)70026-2
[11] Wyld, M. and Webster, A.C. (2021) Chronic Kidney Disease Is a Risk Factor for Stroke. Journal of Stroke and Cerebrovascular Diseases, 30, Article ID: 105730.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105730
[12] Weiner, D.E., Tighiouart, H., Amin, M.G., et al. (2004) Chronic Kidney Disease As a Risk Factor for Cardiovascular Disease and All-Cause Mortality: A Pooled Analy-sis of Community-Based Studies. Journal of the American Society of Nephrology, 15, 1307-1315.
https://doi.org/10.1097/01.ASN.0000123691.46138.E2
[13] Lee, M., Saver, J.L., Chang, K.H., et al. (2010) Low Glomerular Filtration Rate and Risk of Stroke: Meta-Analysis. BMJ, 341, Article No. C4249.
https://doi.org/10.1136/bmj.c4249
[14] Masson, P., Webster, A.C., Hong, M., et al. (2015) Chronic Kidney Dis-ease and the Risk of Stroke: A Systematic Review and Meta-Analysis. Nephrology Dialysis Transplantation, 30, 1162-1169.
https://doi.org/10.1093/ndt/gfv009
[15] Oh, C.M., Park, S.K., Jung, J.Y., et al. (2021) Reduced Glo-merular Filtration Rate and Risk of Stroke: A Nationwide Cohort Study in South Korea. Journal of Atherosclerosis and Thrombosis, 28, 928-941.
https://doi.org/10.5551/jat.56143
[16] Ninomiya, T., Perkovic, V., Verdon, C., et al. (2009) Proteinuria and Stroke: A Meta-Analysis of Cohort Studies. American Journal of Kidney Diseases, 53, 417-425.
https://doi.org/10.1053/j.ajkd.2008.08.032
[17] Kelly, D.M. and Rothwell, P.M. (2020) Proteinuria as an Inde-pendent Predictor of Stroke: Systematic Review and Meta-analysis. International Journal of Stroke, 15, 29-38.
https://doi.org/10.1177/1747493019895206
[18] Lee, M., Saver, J.L., Chang, K.-H., et al. (2010) Level of Albu-minuria and Risk of Stroke: Systematic Review and Meta-Analysis. Cerebrovascular Diseases, 30, 464-469.
https://doi.org/10.1159/000317069
[19] Gutiérrez, O.M.J.S., Muntner, P., Rizk, D.V., McClellan, W.M., Safford, M.M., et al. (2012) Racial Differences in Albuminuria, Kidney Function, and Risk of Stroke. Neurology, 79, 1686-1692.
https://doi.org/10.1212/WNL.0b013e31826e9af8
[20] Iseki, K., Kinjo, K., Kimura, Y., Osawa, A. and Fukiyama, K. (1993) Evidence for High Risk of Cerebral Hemorrhage in Chronic Dialysis Patients. Kidney International, 44, 1086-1090.
https://doi.org/10.1038/ki.1993.352
[21] Murray, A.M., Seliger, S., Lakshminarayan, K., et al. (2013) Incidence of Stroke before and after Dialysis Initiation in Older Patients. Journal of the American Society of Nephrology, 24, 1166-1173.
https://doi.org/10.1681/ASN.2012080841
[22] Collins, A.J., Foley, R.N., Chavers, B., et al. (2012) United States Renal Data System 2011 Annual Data Report: Atlas of Chronic Kidney Disease & End-Stage Renal Disease in the United States. American Journal of Kidney Diseases, 59, Article No. A7.
https://doi.org/10.1053/j.ajkd.2011.11.015
[23] Kumai, Y., Kamouchi, M., Hata, J., et al. (2012) Proteinuria and Clinical Outcomes after Ischemic Stroke. Neurology, 78, 1909-1915.
https://doi.org/10.1212/WNL.0b013e318259e110
[24] El Husseini, N., Fonarow, G.C., Smith, E.E., et al. (2017) Renal Dysfunction Is Associated with Poststroke Discharge Disposition and In-Hospital Mortality: Findings from Get with the Guidelines-Stroke. Stroke, 48, 327-334.
https://doi.org/10.1161/STROKEAHA.116.014601
[25] Yeh, S.J., Jeng, J.S., Tang, S.C., et al. (2015) Low Esti-mated Glomerular Filtration Rate Is Associated with Poor Outcomes in Patients Who Suffered a Large Artery Athero-sclerosis Stroke. Atherosclerosis, 239, 328-334.
https://doi.org/10.1016/j.atherosclerosis.2015.01.038
[26] Molshatzki, N., Orion, D., Tsabari, R., et al. (2011) Chronic Kidney Disease in Patients with Acute Intracerebral Hemorrhage: Association with Large Hematoma Volume and Poor Outcome. Cerebrovascular Diseases, 31, 271-277.
https://doi.org/10.1159/000322155
[27] Ito, S., Nagasawa, T., Abe, M., et al. (2009) Strain Vessel Hypothesis: A Viewpoint for Linkage of Albuminuria and Cerebro-Cardiovascular Risk. Hypertension Research, 32, 115-121.
https://doi.org/10.1038/hr.2008.27
[28] Bernbaum, M., Menon, B.K., Fick, G., et al. (2015) Reduced Blood Flow in Normal White Matter Predicts Development of Leukoaraiosis. Journal of Cerebral Blood Flow & Metabolism, 35, 1610-1615.
https://doi.org/10.1038/jcbfm.2015.92
[29] Deramecourt, V., Slade, J.Y., Oakley, A.E., et al. (2012) Staging and Natural History of Cerebrovascular Pathology in Dementia. Neurology, 78, 1043-1050.
https://doi.org/10.1212/WNL.0b013e31824e8e7f
[30] Nagasawa, T., Mori, T., Ohsaki, Y., et al. (2012) Albuminu-ria Indicates the Pressure-associated Injury of Juxtamedullary Nephrons and Cerebral Strain Vessels in Spontaneously Hypertensive Stroke-Prone Rats. Hypertension Research, 35, 1024-1031.
https://doi.org/10.1038/hr.2012.112
[31] Kanamaru, T., Suda, S., Muraga, K., et al. (2017) Albuminuria Predicts Early Neurological Deterioration in Patients with Acute Ischemic Stroke. Journal of the Neurological Sciences, 372, 417-420.
https://doi.org/10.1016/j.jns.2016.11.007
[32] Akchurin, O.M. and Kaskel, F. (2015) Update on Inflammation in Chronic Kidney Disease. Blood Purification, 39, 84-92.
https://doi.org/10.1159/000368940
[33] Mihai, S., Codrici, E., Popescu, I.D., et al. (2016) Proteomic Biomarkers Panel: New Insights in Chronic Kidney Disease. Disease Markers, 2016, Article ID: 3185232.
https://doi.org/10.1155/2016/3185232
[34] Amdur, R.L., Feldman, H.I., Gupta, J., et al. (2016) Inflammation and Progression of CKD: The CRIC Study. Clinical Journal of the American Society of Nephrology, 11, 1546-1556.
https://doi.org/10.2215/CJN.13121215
[35] Alves, F.C., Sun, J., Qureshi, A.R., et al. (2018) the Higher Mortality Associated with Low Serum Albumin Is Dependent on Systemic Inflammation in End-stage Kidney Disease. PLoS ONE, 13, Article ID: e0190410.
https://doi.org/10.1371/journal.pone.0190410
[36] Assem, M., Lando, M., Grissi, M., et al. (2018) the Impact of Uremic Toxins on Cerebrovascular and Cognitive Disorders. Toxins, 10, Article No. 303.
https://doi.org/10.3390/toxins10070303
[37] Yu, M., Kim, Y.J. and Kang, D.H. (2011) Indoxyl Sulfate-induced Endothelial Dysfunction in Patients with Chronic Kidney Disease via an Induction of Oxidative Stress. Clinical Journal of the American Society of Nephrology, 6, 30-39.
https://doi.org/10.2215/CJN.05340610
[38] Taddei, S., Virdis, A., Ghiadoni, L., et al. (2001) Endothelial Dysfunc-tion in Hypertension. Journal of Cardiovascular Pharmacology, 38, S11-S14.
https://doi.org/10.1097/00005344-200111002-00004
[39] Virdis, A., Ghiadoni, L., Cardinal, H., Favilla, S., Du-ranti, P., Birindelli, R., Magagna, A., Bernini, G., Salvetti, G., Taddei, S. and Salvetti, A. (2001) Mechanisms Responsi-ble for Endothelial Dysfunction Induced by Fasting Hyperhomocystinemia in Normotensive Subjects and Patients with Essential Hypertension. Journal of the American College of Cardiology, 38, 1106-1115.
https://doi.org/10.1016/S0735-1097(01)01492-9
[40] Ma, Y., Zhou, L., Dong, J., et al. (2015) Arterial Stiffness and Increased Cardiovascular Risk in Chronic Kidney Disease. International Urology and Nephrology, 47, 1157-1164.
https://doi.org/10.1007/s11255-015-1009-x
[41] Choi, H.Y., Park, S.K., Yun, G.Y., et al. (2016) Glycated Albu-min Is Independently Associated with Arterial Stiffness in Non-Diabetic Chronic Kidney Disease Patients. Medicine, 95, Article No. e3362.
https://doi.org/10.1097/MD.0000000000003362
[42] Jing, W., Jabbari, B. and Vaziri, N.D. (2018) Uremia Induc-es Upregulation of Cerebral Tissue Oxidative/Inflammatory Cascade, Down-Regulation of Nrf2 Pathway and Disruption of Blood Brain Barrier. American Journal of Translational Research, 10, 2137-2147.
[43] Kusano, E. (2011) Mecha-nism by Which Chronic Kidney Disease Causes Cardiovascular Disease and the Measures to Manage This Phenomenon. Clinical and Experimental Nephrology, 15, 627-633.
https://doi.org/10.1007/s10157-011-0461-x
[44] Moe, S.M. (2012) Klotho: A Master Regulator of Cardiovascular Disease? Circulation, 125, 2181-2183.
https://doi.org/10.1161/CIRCULATIONAHA.112.104828
[45] Yan, J., Li, L., Zhang, M., Cai, H. and Ni, Z. (2018) Circulating Bone-Specific Alkaline Phosphatase and Abdominal Aortic Calcification in Maintenance Hemodialy-sis Patients. Biomarkers in Medicine, 12, 1231-1239.
https://doi.org/10.2217/bmm-2018-0089
[46] Chue, C.D., Townend, J.N., Steeds, R.P., et al. (2010) Arterial Stiff-ness in Chronic Kidney Disease: Causes and Consequences. Heart, 96, 817-823.
https://doi.org/10.1136/hrt.2009.184879
[47] Bugnicourt, J.M., Chillon, J.M., Massy, Z.A., et al. (2009) High Prevalence of Intracranial Artery Calcification in Stroke Patients with CKD: A Retrospective Study. Clinical Journal of the American Society of Nephrology, 4, 284-290.
https://doi.org/10.2215/CJN.02140508
[48] Hruska, K.A., Mathew, S., Lund, R., et al. (2008) Hyperphosphatemia of Chronic Kidney Disease. Kidney International, 74, 148-157.
https://doi.org/10.1038/ki.2008.130
[49] Lau, W.L. and Ix, J.H. (2013) Clinical Detection, Risk Factors, and Cardiovascular Consequences of Medial Arterial Calcification: A Pattern of Vascular Injury Associated with Aberrant Mineral Metabolism. Seminars in Nephrology, 33, 93-105.
https://doi.org/10.1016/j.semnephrol.2012.12.011
[50] Lau, W.L., Huisa, B.N. and Fisher, M. (2017) The Cere-brovascular-Chronic Kidney Disease Connection: Perspectives and Mechanisms. Translational Stroke Research, 8, 67-76.
https://doi.org/10.1007/s12975-016-0499-x
[51] Chen, T., Mao, H., Chen, C., et al. (2015) The Role and Mechanism of Alpha-Klotho in the Calcification of Rat Aortic Vascular Smooth Muscle Cells. BioMed Research Interna-tional, 2015, Article ID: 194362.
https://doi.org/10.1155/2015/194362
[52] Hojs Fabjan, T. and Hojs, R. (2014) Stroke and Renal Dysfunction. Eu-ropean Journal of Internal Medicin, 25, 18-24.
https://doi.org/10.1016/j.ejim.2013.08.710
[53] Desbien, A.M., Chonchol, M., Gnahn, H., et al. (2008) Kidney Function and Progression of Carotid Intima-Media Thickness in a Community Study. American Journal of Kidney Dis-eases, 51, 584-593.
https://doi.org/10.1053/j.ajkd.2007.11.026
[54] Gu, X., Fang, X., Hua, Y., et al. (2016) Association between Kid-ney Dysfunction and Carotid Atherosclerosis in Community-Based Older Adults in China. Angiology, 67, 252-258.
https://doi.org/10.1177/0003319715586505
[55] Kajitani, N., Uchida, H.A., Suminoe, I., et al. (2018) Chronic Kidney Disease Is Associated with Carotid Atherosclerosis and Symptomatic Ischaemic Stroke. Journal of International Medical Research, 46, 3873-3883.
https://doi.org/10.1177/0300060518781619
[56] Song, X., Li, J., Hua, Y., et al. (2020) Chronic Kidney Disease Is Associated with Intracranial Artery Stenosis Distribution in the Middle-Aged and Elderly Population. Journal of Athero-sclerosis and Thrombosis, 27, 245-254.
https://doi.org/10.5551/jat.49569
[57] Ghoshal, S. and Freedman, B.I. (2019) Mechanisms of Stroke in Patients with Chronic Kidney Disease. American Journal of Nephrology, 50, 229-239.
https://doi.org/10.1159/000502446
[58] Thompson, C.S. and Hakim, A.M. (2009) Living Beyond Our Physiolog-ical Means: Small Vessel Disease of the Brain Is an Expression of a Systemic Failure in Arteriolar Function: A Unifying Hypothesis. Stroke, 40, e322-e330.
https://doi.org/10.1161/STROKEAHA.108.542266
[59] Armstead, W.M. (2016) Cerebral Blood Flow Autoregu-lation and Dysautoregulation. Anesthesiology Clinics, 34, 465-477.
https://doi.org/10.1016/j.anclin.2016.04.002
[60] Carlstrom, M., Wilcox, C.S. and Arendshorst, W.J. (2015) Renal Autoregulation in Health and Disease. Physiological Reviews, 95, 405-511.
https://doi.org/10.1152/physrev.00042.2012
[61] Castro, P., Azevedo, E., Rocha, I., et al. (2018) Chronic Kidney Disease and Poor Outcomes in Ischemic Stroke: Is Impaired Cerebral Autoregulation the Missing Link? BMC Neurology, 18, Article No. 21.
https://doi.org/10.1186/s12883-018-1025-4
[62] Polinder-Bos, H.A., Garcia, D.V., Kuipers, J., et al. (2018) He-modialysis Induces an Acute Decline in Cerebral Blood Flow in Elderly Patients. Journal of the American Society of Nephrology, 29, 1317-1325.
https://doi.org/10.1681/ASN.2017101088
[63] Graus, F., Escudero, D., Oleaga, L., et al. (2018) Syndrome and Outcome of Antibody-Negative Limbic Encephalitis. European Journal of Neurology, 25, 1011-1016.
https://doi.org/10.1111/ene.13661
[64] Shang, W., Li, L., Huang, S., et al. (2016) Chronic Kidney Disease and the Risk of New-Onset Atrial Fibrillation: A Meta-Analysis of Prospective Cohort Studies. PLoS ONE, 11, Article ID: e0155581.
https://doi.org/10.1371/journal.pone.0155581
[65] Boriani, G., Savelieva, I., Dan, G.A., et al. (2015) Chronic Kid-ney Disease in Patients with Cardiac Rhythm Disturbances Or Implantable Electrical Devices: Clinical Significance and Implications for Decision Making—A Position Paper of the European Heart Rhythm Association Endorsed by the Heart Rhythm Society and the Asia Pacific Heart Rhythm Society. EP Europace, 17, 1169-1196.
https://doi.org/10.1093/europace/euv202
[66] Mehta, R., Cai, X., Lee, J., et al. (2016) Association of Fibroblast Growth Factor 23 with Atrial Fibrillation in Chronic Kidney Disease, from the Chronic Renal Insufficiency Cohort Study. JAMA Cardiology, 1, 548-556.
https://doi.org/10.1001/jamacardio.2016.1445
[67] Yau, J.W., Teoh, H. and Verma, S. (2015) Endothelial Cell Control of Thrombosis. BMC Cardiovascular Disorders, 15, Article No. 130.
https://doi.org/10.1186/s12872-015-0124-z
[68] Naganuma, T., Takemoto, Y., Shoji, T., et al. (2015) Cerebral Mi-crobleeds Predict Intracerebral Hemorrhage in Hemodialysis Patients. Stroke, 46, 2107-2112.
https://doi.org/10.1161/STROKEAHA.115.009324
[69] Lau, W.L., Nunes, A.C.F., Vasilevko, V., et al. (2020) Chronic Kidney Disease Increases Cerebral Microbleeds in Mouse and Man. Translational Stroke Research, 11, 122-134.
https://doi.org/10.1007/s12975-019-00698-8
[70] Major, R.W., Cheung, C.K., Gray, L.J., et al. (2015) Statins and Cardiovascular Primary Prevention in CKD: A Meta-Analysis. Clinical Journal of the American Society of Nephrology, 10, 732-739.
https://doi.org/10.2215/CJN.07460714
[71] Pavlou, E.G., Georgatzakou, H.T., Fortis, S.P., et al. (2021) Coagula-tion Abnormalities in Renal Pathology of Chronic Kidney Disease: The Interplay between Blood Cells and Soluble Fac-tors. Biomolecules, 11, Article No. 1309.
https://doi.org/10.3390/biom11091309
[72] Abdelmaguid, A., Roberts, L.N., Tugores, L., et al. (2022) Evaluation of Novel Coagulation and Platelet Function Assays in Patients with Chronic Kidney Disease. Journal of Thrombosis and Haemostasis, 20, 845-856.
https://doi.org/10.1111/jth.15653
[73] Ovbiagele, B., Bath, P.M., Cotton, D., et al. (2013) Low Glomerular Filtra-tion Rate, Recurrent Stroke Risk, and Effect of Renin-angiotensin System Modulation. Stroke, 44, 3223-3225.
https://doi.org/10.1161/STROKEAHA.113.002463
[74] Sarfo, F.S., Mobula, L.M., Sarfo-Kantanka, O., et al. (2019) Estimated Glomerular Filtration Rate Predicts Incident Stroke among Ghanaians with Diabetes and Hypertension. Journal of the Neurological Sciences, 396, 140-147.
https://doi.org/10.1016/j.jns.2018.11.017
[75] Muntner, P., Judd, S.E., McClellan, W., et al. (2012) Incidence of Stroke Symptoms among Adults with Chronic Kidney Disease: Results from the Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Nephrology Dialysis Transplantation, 27, 166-173.
https://doi.org/10.1093/ndt/gfr218
[76] Cornelissen, A., Fuller, D.T., Fernandez, R., et al. (2021) APOL1 Genetic Variants Are Associated with Increased Risk of Coronary Atherosclerotic Plaque Rupture in the Black Population. Arte-riosclerosis, Thrombosis, and Vascular Biology, 41, 2201-2214.
https://doi.org/10.1161/ATVBAHA.120.315788
[77] Chen, T.K., Fitzpatrick, J., Winkler, C.A., et al. (2021) APOL1 Risk Variants and Subclinical Cardiovascular Disease in Incident Hemodialysis Patients. Kidney International Reports, 6, 333-341.
https://doi.org/10.1016/j.ekir.2020.11.006
[78] Gutierrez, O.M., Irvin, M.R., Chaudhary, N.S., et al. (2018) APOL1 Nephropathy Risk Variants and Incident Cardiovascular Disease Events in Community-Dwelling Black Adults. Circulation: Genomic and Precision Medicine, 11, Article No. e002098.
https://doi.org/10.1161/CIRCGEN.117.002098
[79] Jabbari, B. and Vaziri, N.D. (2018) The Nature, Consequenc-es, and Management of Neurological Disorders in Chronic Kidney Disease. Hemodialysis International, 22, 150-160.
https://doi.org/10.1111/hdi.12587
[80] Lau, W.L. (2021) Controversies: Stroke Prevention in Chronic Kidney Dis-ease. Journal of Stroke and Cerebrovascular Diseases, 30, Article ID: 105679.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105679
[81] Drechsler, C., Kalim, S., Wenger, J.B., et al. (2015) Protein Carbamylation Is Associated with Heart Failure and Mortality in Diabetic Patients with End-Stage Renal Disease. Kidney International, 87, 1201-1208.
https://doi.org/10.1038/ki.2014.429
[82] Chelluboina, B. and Vemuganti, R. (2019) Chronic Kidney Disease in the Pathogenesis of Acute Ischemic Stroke. Journal of Cerebral Blood Flow & Metabolism, 39, 1893-1905.
https://doi.org/10.1177/0271678X19866733
[83] Jung, J.M., Kim, H.J., Ahn, H., et al. (2015) Chronic Kidney Disease and Intravenous Thrombolysis in Acute Stroke: A Systematic Review and Meta-Analysis. Journal of the Neu-rological Sciences, 358, 345-350.
https://doi.org/10.1016/j.jns.2015.09.353
[84] Manners, J., Steinberg, A. and Shutter, L. (2017) Early Management of Acute Cerebrovascular Accident. Current Opinion in Critical Care, 23, 556-560.
https://doi.org/10.1097/MCC.0000000000000462
[85] Tonelli, M., Karumanchi, S.A. and Thadhani, R. (2016) Epidemiology and Mechanisms of Uremia-Related Cardiovascular Disease. Circulation, 133, 518-536.
https://doi.org/10.1161/CIRCULATIONAHA.115.018713