E-CAD及PLAC8在不明原因稽留流产蜕膜组织中的表达
Expression of E-CAD and PLAC8 in Decidual Tissue of Unexplained Missed Abortion
DOI: 10.12677/ACM.2022.125593, PDF, HTML, XML, 下载: 390  浏览: 499  科研立项经费支持
作者: 冷 喆*, 孙娴莉, 林 慧, 常晓彤, 宋黄贝, 黄 煜#:青岛大学附属妇女儿童医院,山东 青岛
关键词: E-钙黏蛋白胎盘特异性蛋白8不明原因稽留流产早孕E-Cadherin Placental Specific Protein 8 Unexplained Missed Abortion Early Pregnancy
摘要: 目的:探讨E-钙黏蛋白和胎盘特异性蛋白8在不明原因稽留流产蜕膜组织中的表达及其可能的意义。方法:选取2020年10月至2021年1月至青岛大学附属妇女儿童医院妇科就诊的早孕稽留流产患者20例,非计划妊娠行人工流产的正常早孕女性20例作为研究对象。采用实时荧光定量聚合酶链反应(qRT-PCR),Western Blot的方法检测两组蜕膜组织中E-钙黏蛋白和PLAC8的表达水平。结果:不明原因稽留流产组蜕膜组织中E-钙黏蛋白的mRNA及蛋白表达明显低于正常对照组,PLAC8的mRNA及蛋白表达明显高于正常对照组。结论:E-钙黏蛋白的低表达及PLAC8的过表达可能与不明原因稽留流产的发生有关。我们的实验结果可能有助于揭示不明原因稽留流产新的研究方向。
Abstract: Objective: To investigate the expression and possible significance of E-cadherin and Placental spe-cific protein 8 (PLAC8) in decidual tissue of unexplained missed abortion. Methods: A total of 20 pa-tients with missed abortion in early pregnancy and 20 normal early pregnant women were selected from October 2020 to January 2021 in Women and Children’s Hospital affiliated to Qingdao Univer-sity. Quantitative Real-time chain reaction (qRT-PCR) and Western Blot were used to detect the ex-pression of E-cadherin and PLAC8 in the decidual of the two groups. Results: The expression of mRNA and protein of E-cadherin in decidual tissue of unexplained missed abortion group was sig-nificantly lower than that of normal control, while the expression of mRNA and protein of PLAC8 was significantly higher than that of normal control. Conclusion: The low expression of E-cadherin and the overexpression of PLAC8 may be related to the occurrence of unexplained missed abortion. Our experimental results may be helpful to reveal the new research direction of unexplained missed abortion.
文章引用:冷喆, 孙娴莉, 林慧, 常晓彤, 宋黄贝, 黄煜. E-CAD及PLAC8在不明原因稽留流产蜕膜组织中的表达[J]. 临床医学进展, 2022, 12(5): 4096-4104. https://doi.org/10.12677/ACM.2022.125593

1. 引言

稽留流产是自然流产的一种特殊形式,在育龄期妇女并不少见,超声表现为空囊或者未见胎心搏动 [1]。现阶段,稽留流产的发病率呈上升趋势,已经占到自然流产的15%至20% [2]。稽留流产的病因已经明确多种,包括夫妇及胚胎染色体异常、内分泌紊乱、遗传因素、生殖系统畸形、感染、免疫功能障碍、血栓前状态等 [3] [4] [5]。但是,仍有一半以上的稽留流产找不到明确的原因。

E-钙黏蛋白(E-cadherin, E-CAD)是一种钙离子依赖的单通道跨膜细胞粘附分子,其功能与上皮表型有关 [6],是Takeichi等 [7] 首次发现的蛋白质成员。编码E-钙黏蛋白的基因名叫CDH1,长约100 kb,位于染色体16q22.1上 [8]。E-钙黏蛋白则是由CDH1基因转录翻译成135 kDa的前体多肽,该前体片段携带一个共同蛋白酶切割位点(Arg-Arg-Gln-Lys-Arg),该切割位点有助于将蛋白质水解加工成具有粘附性的成熟的功能性蛋白质。成熟的E-钙黏蛋白是一种120 kDa的跨膜蛋白,它能将正常的和极化的上皮细胞连接在一起 [9] [10]。

胎盘特异性蛋白8 (Placenta-specific protein 8, PLAC8),是一种16 kDa的小分子蛋白质,又被称为Onzin,从两栖动物到人类都高度保守。该蛋白在小鼠胎盘中首次被发现 [11],在人体则是在树突状细胞中首次被发现 [12]。PLAC8已被证实参与各种细胞过程,例如细胞分化及凋亡,免疫调节等 [13],并且能调控各种人类疾病,包括传染病、糖尿病和肿瘤等 [14] [15] [16] [17]。

本次研究,将比较正常早孕女性及早孕期发生不明原因稽留流产女性的蜕膜组织中E-CAD及PLAC8的表达水平,初步探讨E-CAD和PLAC8在不明原因稽留流产与正常妊娠中的蜕膜组织中的表达差异及其可能的意义。

2. 方法

2.1. 人体组织样本的收集

收集2020年10月至2021年1月至青岛大学附属妇女儿童医院就诊的早孕稽留流产患者20例,设为M组,非计划妊娠行人工流产的正常早孕女性20例,设为C组。根据人民卫生出版社出版的《妇产科学》第九版的诊断标准界定正常早孕与稽留流产,并制定纳入与排除标准。两组患者均排除了夫妻双方染色体异常,内分泌紊乱,遗传因素,生殖系统畸形,生殖道感染,免疫功能障碍,血栓前状态,严重的慢性疾病,排除了接受过HCG激素保胎治疗,接触有毒有害物质以及营养不良者。妊娠时间选择6~10周,以末次月经为依据,并经过超声证实。经吸宫取出的组织经临床专业医师证实为蜕膜组织,蜕膜组织取出后,立刻用无菌生理盐水冲洗,并用无菌剪刀去除血污以及明显的坏死组织,每份标本分成三部分,一部分置于RNA稳定保存液中,4℃保存,一部分置于−80℃冷冻保存,另一部分置于4%多聚甲醛中,4℃固定过夜。患者的一般资料见表1。两组患者在年龄,妊娠时间和妊娠次数均无统计学差异。所有受试者均获得书面通知书。本研究经过青岛妇女儿童医院伦理委员会批准。

Table 1. General characteristics of patients with missed abortion and normal pregnancy

表1. 稽留流产组与正常妊娠组的患者的一般特征

2.2. RNA提取、实时荧光定量PCR

每个样本称取20 mg蜕膜组织,使用无菌研磨杵研磨至糜状,使用MolPure Cell/Tissue Total RNA Kit (翌圣生物,中国)按照试剂盒提供的说明书提取蜕膜组织的总RNA,使用赛默飞紫外分光光度计测定RNA浓度及纯度,使用HifairII 1st Strand cDNA Synthesis SuperMix for qPCR (翌圣生物,中国)按照其提供的使用说明书将总RNA逆转录成cDNA。使用Hieff qPCR SYBR Green Master Mix (翌圣生物,中国)以及赛默飞QuantStudio 3实时荧光定量PCR系统进行实时荧光定量PCR,E-CAD,PLAC8以及GAPDH的引物序列见表2。qRT-PCR的反应条件为95℃预变性5 min,之后进入循环扩增阶段,95℃变性10 s,56℃退火20 s,72℃延伸20 s,共40个循环。使用2△△CT进行数据分析,使用GAPDH作为管家基因进行归一化处理。

Table 2. Primer sequence of real-time quantitative PCR

表2. 实时荧光定量PCR的引物序列

2.3. 蛋白免疫印迹

每个样本称取40 mg蜕膜组织,使用无菌研磨杵研磨成糜状,加入500 μl含有1%磷酸酶抑制剂(雅酶生物,中国)和1%蛋白酶抑制剂(雅酶生物,中国)的高强度RIPA裂解液(雅酶生物,中国),冰上裂解30 min,之后于4℃条件下,12,000 rpm离心20 min,取上清至新的EP管中,使用BCA蛋白定量试剂盒(雅酶生物,中国)测定蛋白浓度,之后每份蛋白加入1/4体积的5×上样缓冲液,沸水煮10 min使蛋白变性。等量的总蛋白经12.5% SDS-PAGE凝胶电泳分离后转移至PVDF膜,使用含有5%脱脂奶粉(雅酶生物,中国)的TBST缓冲液室温封闭2 h,使用1:1000稀释的兔抗E-CAD抗体(正能生物,中国),1:1000稀释的兔抗PLAC8抗体(三鹰生物,中国)和1:6000稀释的鼠抗β-Actin抗体(正能生物,中国) 4℃孵育过夜,第二天使用TBST清洗三遍,使用1:6000相应二抗(雅酶生物,中国)室温孵育2 h,洗涤后,使用ECL超敏发光试剂盒(雅酶生物,中国)观察膜,以β-Actin作为内参对照。使用VILBER显影仪进行曝光并拍照,使用其伴生软件进行灰度值分析。

2.4. 统计方法

采用Graphpad Prism 9软件进行统计学分析,正态性检验使用One-Sample K-S检验,方差齐性检验使用F检验,两组间比较采用两独立样本均数比较的t检验,所有数据均以 X ¯ ± S 表示。以P < 0.05为差异具有统计学意义。

3. 结果

3.1. 实时荧光定量PCR检测两组患者蜕膜组织中E-CAD和PLCA8的mRNA表达

采用实时荧光定量PCR的方法检测稽留流产组患者和正常妊娠蜕膜组织中E-CAD,PLAC8的mRNA的表达。稽留流产组蜕膜组织中E-CAD的mRNA水平(0.053 ± 0.035)明显低于正常妊娠组(0.159 ± 0.045) (P < 0.001) (图1(A))。稽留流产组蜕膜组织中PLAC8的mRNA水平(0.463 ± 0.129)明显高于正常妊娠组(0.074 ± 0.062) (P < 0.001) (图1(B))。这提示,不明原因稽留流产患者蜕膜组织中E-CAD相应基因转录下调,PLAC8相应基因的转录上调。

(A) 稽留流产组患者蜕膜组织中E-CAD的mRNA水平明显低于正常妊娠组,差异具有统计学意义(P < 0.001);(B) 稽留流产组患者蜕膜组织中PLAC8的mRNA水平明显高于正常妊娠组,差异具有统计学意义(P < 0.001)。

Figure 1. Detection of E-CAD and PLAC8 in decidual tissues of two groups by real-time quantitative PCR

图1. 两组蜕膜组织中E-CAD和PLAC8的实时荧光定量PCR的检测结果

3.2. 免疫印迹法检测两组患者蜕膜组织中E-CAD和PLAC8的蛋白表达水平

为了了解E-CAD和PLAC8在不明原因稽留流产患者和正常妊娠蜕膜组织中的蛋白表达情况,我们采用免疫印迹法检测了稽留流产组患者和正常妊娠蜕膜组织中E-CAD和PLAC8的蛋白表达水平(图2(A))。分析结果显示,稽留流产组蜕膜组织中E-CAD的表达水平(0.289 ± 0.159)明显低于正常妊娠组(1.184 ± 0.394) (P < 0.01) (图2(B))。而稽留流产组蜕膜组织中PLAC8的表达水平(1.098 ± 0.213)明显高于正常妊娠组(0.263 ± 0.151) (P < 0.001) (图2(C))。这些数据提示,稽留流产患者蜕膜组织中E-CAD的蛋白表达下调,PLAC8的蛋白表达上调。

(A) Western Blot 检测两组蜕膜组织中E-CAD和PLAC8的蛋白表达水平,以β-Actin作为内参进行对照。(B) 稽留流产组患者蜕膜组织中的E-CAD蛋白表达水平明显低于正常妊娠组,差异具有统计学意义(P < 0.001)。(C) 稽留流产组患者蜕膜组织中PLAC8的蛋白水平明显高于正常妊娠组,差异具有统计学意义(P < 0.001)。C:正常妊娠组,M:稽留流产组。

Figure 2. Detection of E-CAD and PLAC8 Western Blot in decidual tissues of two groups

图2. 两组蜕膜组织中E-CAD和PLAC8的WesternBlot的检测结果

4. 讨论

稽留流产是妊娠中常见的并发症之一。稽留流产的存在不仅会给母亲带来相当大的身体和经济负担,还会给母亲甚至整个家庭带来严重的心理负担,甚至会影响接下来的妊娠过程。经历过稽留流产的妇女,尤其是反复流产的妇女,通常表现出恐惧,焦虑甚至濒临绝望的心理状态。在妊娠前三个月的早孕期的妊娠丢失约占所有确认的妊娠的31% [18],其中约40%的妊娠丢失只能通过测定血液中的人绒毛膜促性腺激素(HCG)才能检测到。尽管当今时代已经明确了多种稽留流产的病因,但是仍有50%的稽留流产找不到其确切的发生原因。因此,探寻稽留流产发生发展的机制具有重要意义。在本研究中,我们通过比较20例早孕期不明原因稽留流产患者以及20例正常早孕女性蜕膜组织中E-钙黏蛋白以及PLAC8的mRNA及蛋白质的表达水平,探讨E-钙黏蛋白以及PLAC8在不明原因稽留流产中可能的作用,为今后的研究提供新的方向。

E-钙黏蛋白作为介导细胞间粘附的一种跨膜蛋白,在维持细胞间连接及细胞的上皮表型中发挥重要作用。成熟的细胞间粘附连接是由E-钙黏蛋白通过其远端结构域与β-连环蛋白结合,形成E-钙黏蛋白-β-连环蛋白复合物,然后通过α-连环蛋白及其相互作用蛋白α-肌动蛋白与肌动蛋白骨架相连 [19]。E-钙黏蛋白不仅是一种将健康上皮细胞物理结合在一起的粘附蛋白,还是一种可以调节细胞扩散、分化、细胞周期进程和细胞生长及死亡的蛋白,也是一种肿瘤抑制蛋白,在调节多种生理功能方面发挥着重要的作用,而这些功能的失调可能导致癌症的发生 [8]。E-钙黏蛋白的功能丧失是癌症进展的主要因素 [20],其缺失是导致细胞异常粘附和启动侵袭性表型的关键事件 [21],即我们常说的上皮–间充质转化(EMT)过程。

在胚胎发育过程中,E-钙黏蛋白的表达早在两细胞阶段就开始了 [22]。它在卵裂球的粘附和早期胚胎的致密化中起重要作用 [23]。并且,E-钙黏蛋白介导的丝足黏连和肌球蛋白对卵裂球的牵拉使得桑椹胚能够致密化 [24]。EMT则是胚胎发育不同阶段的基本发育过程,在此过程中,细胞失去上皮分化,获得间充质的纺锤形表型,其特征是细胞间粘附丧失,钙黏蛋白–连环蛋白复合体被显著破坏,细胞失去顶面–底面极化,以及获得迁移和侵袭能力 [25] [26]。

PLAC8在肿瘤细胞中已经得到了较为详细的研究,例如,PLAC8在人类前列腺癌和胰腺癌的生长和转移中起关键作用 [27] [28]。PLAC8能够促进前列腺癌中肿瘤细胞的生长 [29],但显著抑制肝细胞癌中肿瘤细胞的生长 [30]。在结肠癌中,PLAC8的过表达会导致细胞活力增强以及肿瘤细胞侵袭 [31]。近期的研究发现,PLAC8反映了上皮及间充质相关标志物如E-钙黏蛋白,N-钙黏蛋白和波形蛋白的表达,并参与了上皮–间充质转化(EMT)的过程。在乳腺癌细胞、胚胎肾293T细胞、结直肠癌细胞和鼻咽癌细胞中,PLAC8下调E-钙黏蛋白的水平从而调节细胞迁移和侵袭 [32] [33] [34] [35]。另一方面,在乳腺癌和鼻咽癌中,PLAC8上调N-钙黏蛋白和波形蛋白的水平 [32] [36]。因此,PLAC8可能反应上皮–间充质相关基因,从而涉及EMT进展和癌症转移。此外,PLAC8可以预测EMT标志物的变化,包括E-钙黏蛋白、N-钙黏蛋白和波形蛋白,是EMT进展的标志 [37]。

在妊娠相关的研究中,PLAC8则被发现可以评价胚胎的质量,例如,在牛胚胎质量评价中,PLAC8可作为一种预测妊娠结局的生物标志物 [38] [39] [40],因此,可推测PLAC8可能是人类胚胎发育和植入的潜在标志物。Li Min等 [41] 的研究提示,PLAC8的表达与胚胎质量和着床潜能有关,可推测PLAC8可能是人类胚胎发育和植入的潜在标志物。已有研究报道,PLAC8在妊娠和胎盘发育过程中的表达是动态的,并以植入依赖的方式积累 [42]。Chang等 [43] 突破性的发现,PLAC8在母胎界面的绒毛外滋养层细胞中特异性表达,而在血管内滋养层细胞中几乎检测不到。

在人类妊娠的过程中,关键的环节是胚胎在子宫内膜中植入以及建立一个功能完备的胎盘,已知,胎盘绒毛是胎盘的基本结构和功能单位。在胎盘绒毛的顶端,细胞滋养层细胞增殖并形成滋养层细胞柱,以突破合体滋养层细胞层,在滋养层细胞柱的远端,滋养层细胞会上皮向间质的转变 [44],即EMT,从而获得典型的运动特征,以侵入母体子宫壁 [45],这部分细胞被称为绒毛外滋养层细胞(EVT)。在侵入母体子宫壁后,一部分EVT定植于蜕膜间质,称为间质性EVT(iEVT),一部分侵入子宫螺旋动脉,取代螺旋动脉的内皮细胞,进行螺旋动脉的重塑,这部分EVT被称为血管内EVT(eEVT) [46]。胎盘形成过程中绒毛滋养层细胞对母体蜕膜的侵袭以及对子宫螺旋动脉的重塑是维持正常妊娠的重要因素。

我们的研究发现,PLAC8的转录和翻译在不明原因稽留流产的蜕膜组织中均上调,而E-CAD的表达下调。这说明PLAC8在不明原因稽留流产的蜕膜中呈现过表达的趋势,并且可能参与了细胞由上皮表型向间充质表型转化的过程。已有研究表明,在不同类型的癌症中,PLAC8过表达有助于MAPK通路激活和转移表型 [47],并在EMT中发挥作用 [48]。根据Chang等 [43] 的研究结果猜测,PLAC8的过表达可能代表着iEVT的异常增殖以及侵袭,结果可能导致eEVT的数量下降,子宫螺旋动脉重塑不足,最终导致不良妊娠结局。PLAC8如何在蜕膜组织中参与EMT过程以及其过表达的意义,尚待进一步阐明。

综上所述,我们的研究证明了不明原因稽留流产的蜕膜组织中PLAC8的过表达以及E-CAD的表达下调,这可能有助于揭示稽留流产新的研究方向。

致谢

本项目得到了青岛市医疗卫生优秀人才培养项目资助。作者感谢青岛大学基础医学院人体显微结构实验室提供的实验平台以及青岛大学附属妇女儿童医院提供的组织标本。

基金项目

青岛市医疗卫生优秀人才培养项目资助。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Marwah, S., Gupta, S., Batra, N., et al. (2016) A Comparative Study to Evaluate the Efficacy of Vaginal vs Oral Prosta-glandin E1 Analogue (Misoprostol) in Management of First Trimester Missed Abortion. Journal of Clinical and Diag-nostic Research: JCDR, 10, QC14-QC18.
https://doi.org/10.7860/JCDR/2016/18178.7891
[2] Linnakaari, R., Helle, N., Mentula, M., et al. (2019) Trends in the Incidence, Rate and Treatment of Miscarriage-Na- tionwide Regis-ter-Study in Finland, 1998-2016. Human Reproduction, 34, 2120-2128.
https://doi.org/10.1093/humrep/dez211
[3] Clifford, K., Rai, R., Watson, H., et al. (1994) An Informative Protocol for the Investigation of Recurrent Miscarriage: Preliminary Experience of 500 Consecutive Cases. Human Reproduction (Oxford, England), 9, 1328-1332.
https://doi.org/10.1093/oxfordjournals.humrep.a138703
[4] Hatasaka, H. (1994) Recurrent Miscarriage: Epidemi-ologic Factors, Definitions, and Incidence. Clinical Obstetrics and gynecology, 37, 625-634.
https://doi.org/10.1097/00003081-199409000-00016
[5] Bulletti, C., Flamigni, C. and Giacomucci, E. (1996) Re-productive Failure Due to Spontaneous Abortion and Recurrent Miscarriage. Human Reproduction Update, 2, 118-136.
https://doi.org/10.1093/humupd/2.2.118
[6] Braga, V. (2000) Epithelial Cell Shape: Cadherins and Small GTPases. Experimental Cell Research, 261, 83-90.
https://doi.org/10.1006/excr.2000.5050
[7] Takeichi, M. (1977) Functional Correlation between Cell Adhesive Properties and Some Cell Surface Proteins. The Journal of Cell Biology, 75, 464-474.
https://doi.org/10.1083/jcb.75.2.464
[8] Wong, S., Fang, C., Chuah, L., et al. (2018) E-Cadherin: Its Dysregula-tion in Carcinogenesis and Clinical Implications. Critical Reviews in Oncology/Hematology, 121, 11-22.
https://doi.org/10.1016/j.critrevonc.2017.11.010
[9] Jiang, W. (1996) E-Cadherin and Its Associated Protein Catenins, Cancer Invasion and Metastasis. The British Journal of Surgery, 83, 437-446.
https://doi.org/10.1002/bjs.1800830404
[10] Capaldo, C., Farkas, A. and Nusrat, A. (2014) Epithelial Adhesive Junctions. F1000Prime Reports, 6, 1.
https://doi.org/10.12703/P6-1
[11] Galaviz-Hernandez, C., Stagg, C., de Ridder, G., et al. (2003) Plac8 and Plac9, Novel Placental-Enriched Genes Identified through Microarray Analysis. Gene, 309, 81-89.
https://doi.org/10.1016/S0378-1119(03)00508-0
[12] Rissoan, M., Duhen, T., Bridon, J., et al. (2002) Subtractive Hybridization Reveals the Expression of Immunoglobulin-Like Transcript 7, Eph-B1, Granzyme B, and 3 Novel Tran-scripts in Human Plasmacytoid Dendritic Cells. Blood, 100, 3295-303.
https://doi.org/10.1182/blood-2002-02-0638
[13] Rogulski, K., Li, Y., Rothermund, K., et al. (2005) Onzin, a c-Myc-Repressed Target, Promotes Survival and Transformation by Modulating the Akt-Mdm2-p53 Pathway. Onco-gene, 24, 7524-7541.
https://doi.org/10.1038/sj.onc.1208897
[14] Ledford, J., Kovarova, M. and Koller, B. (2007) Impaired Host De-fense in Mice Lacking ONZIN. Journal of Immunology (Baltimore, Md: 1950), 178, 5132-5143.
https://doi.org/10.4049/jimmunol.178.8.5132
[15] Jimenez-Preitner, M., Berney, X., Uldry, M., et al. (2011) Plac8 Is an Inducer of C/EBPβ Required for Brown Fat Differentiation, Thermoregulation, and Control of Body Weight. Cell Metabolism, 14, 658-670.
https://doi.org/10.1016/j.cmet.2011.08.008
[16] Jimenez-Preitner, M., Berney, X. and Thorens, B. (2012) Plac8 Is Required for White Adipocyte Differentiation in Vitro and Cell Number Control in Vivo. PLoS ONE, 7, e48767.
https://doi.org/10.1371/journal.pone.0048767
[17] Johnson, R., Kerr, M. and Slaven, J. (2012) Plac8-Dependent and Inducible NO Synthase-Dependent Mechanisms Clear Chlamydia muridarum Infections from the Genital Tract. Journal of Immunology (Baltimore, Md: 1950), 188, 1896-1904.
https://doi.org/10.4049/jimmunol.1102764
[18] Zinaman, M., Clegg, E., Brown, C., et al. (1996) Estimates of Hu-man Fertility and Pregnancy Loss. Fertility and Sterility, 65, 503-509.
https://doi.org/10.1016/S0015-0282(16)58144-8
[19] Hülsken, J., Birchmeier, W. and Behrens, J. (1994) E-Cadherin and APC Compete for the Interaction with Beta-Catenin and the Cytoskeleton. The Journal of Cell Biology, 127, 2061-2069.
https://doi.org/10.1083/jcb.127.6.2061
[20] Jeanes, A., Gottardi, C. and Yap, A. (2008) Cadher-ins and Cancer: How Does Cadherin Dysfunction Promote Tumor Progression? Oncogene, 27, 6920-6929.
https://doi.org/10.1038/onc.2008.343
[21] Schmalhofer, O., Brabletz, S. and Brabletz, T. (2009) E-cadherin, Be-ta-Catenin, and ZEB1 in Malignant Progression of Cancer. Cancer Metastasis Reviews, 28, 151-166.
https://doi.org/10.1007/s10555-008-9179-y
[22] Riethmacher, D., Brinkmann, V. and Birchmeier, C. (1995) A Targeted Mutation in the Mouse E-Cadherin Gene Results in Defective Preimplantation Development. Proceedings of the National Academy of Sciences of the United States of America, 92, 855-859.
https://doi.org/10.1073/pnas.92.3.855
[23] Fleming, T., Javed, Q. and Hay, M. (1992) Epithelial Differentiation and Intercellular Junction Formation in the Mouse Early Embryo. Development (Cambridge, England) Supplement, 105-112.
https://doi.org/10.1242/dev.116.Supplement.105
[24] Fierro-González, J., White, M., Silva, J., et al. (2013) Cad-herin-Dependent Filopodia Control Preimplantation Embryo Compaction. Nature Cell Biology, 15, 1424-1433.
https://doi.org/10.1038/ncb2875
[25] Kim, K., Lu, Z. and Hay, E. (2002) Direct Evidence for a Role of Be-ta-Catenin/LEF-1 Signaling Pathway in Induction of EMT. Cell Biology International, 26, 463-476.
https://doi.org/10.1006/cbir.2002.0901
[26] Lee, J., Dedhar, S., Kalluri, R., et al. (2006) The Epitheli-al-Mesenchymal Transition: New Insights in Signaling, Development, and Disease. The Journal of Cell Biology, 172, 973-981.
https://doi.org/10.1083/jcb.200601018
[27] Uehara, H., Takahashi, T. and Izumi, K. (2013) Induction of Retinol-Binding Protein 4 and Placenta-Specific 8 Expression in Human Prostate Cancer Cells Remaining in Bone Fol-lowing Osteolytic Tumor Growth Inhibition by Osteoprotegerin. International Journal of Oncology, 43, 365-374.
https://doi.org/10.3892/ijo.2013.1954
[28] Kinsey, C., Balakrishnan, V., O’Dell, M., et al. (2014) Plac8 Links Oncogenic Mutations to Regulation of Autophagy and Is Critical to Pancreatic Cancer Progression. Cell Reports, 7, 1143-1155.
https://doi.org/10.1016/j.celrep.2014.03.061
[29] Kolluru, V., Pal, D., Papu John, A.M.S., et al. (2017) Induction of Plac8 Promotes Pro-Survival Function of Autophagy in Cadmium-Induced Prostate Carcinogenesis. Cancer Letter, 408, 121-129.
https://doi.org/10.1016/j.canlet.2017.08.023
[30] Zou, L., Chai, J., Gao, Y., et al. (2016) Down-Regulated PLAC8 Promotes Hepatocellular Carcinoma Cell Proliferation by Enhancing PI3K/Akt/GSK3β/Wnt/β-Catenin Signaling. Bio-medicine & Pharmacotherapy, 84, 139-146.
https://doi.org/10.1016/j.biopha.2016.09.015
[31] Li, C., Ma, H., Wang, Y., et al. (2014) Excess PLAC8 Promotes an Unconventional ERK2-Dependent EMT in Colon Cancer. The Journal of Clinical Investigation, 124, 2172-2187.
https://doi.org/10.1172/JCI71103
[32] Mao, M., Chen, Y., Jia, Y., et al. (2019) PLCA8 Suppresses Breast Cancer Apoptosis by Activating the PI3k/AKT/ NF-κB Pathway. Journal of Cellular and Molecular Medicine, 23, 6930-6941.
https://doi.org/10.1111/jcmm.14578
[33] Huang, M.L., Zou, Y., Yang, R., et al. (2019) Placenta Specific 8 Gene Induces Epithelial-Mesenchymal Transition of Nasopharyngeal Carcinoma Cells via the TGF-β/Smad Pathway. Experi-mental Cell Research, 374, 172-180.
https://doi.org/10.1016/j.yexcr.2018.11.021
[34] Mao, M., Hu, D., Yang, J., et al. (2021) Regulation of Tamoxifen Sensitivity by the PLAC8/MAPK Pathway Axis Is Antagonized by Curcumin-Induced Protein Stability Change. Journal of Molecular Medicine (Berl), 99, 845-858.
https://doi.org/10.1007/s00109-021-02047-5
[35] Qin, X.H., Wang, H.X., Ma, L., et al. (2020) Knockout of the Placenta Specific 8 Gene Affects the Proliferation and Migration of Human Embryonic Kidney 293T Cell. Cell Biochem-istry and Biophysics, 78, 55-64.
https://doi.org/10.1007/s12013-019-00893-2
[36] Huang, M.L., Qi, C.L., Zou, Y., et al. (2020) Plac8-Mediated Autophagy Regulates Nasopharyngeal Carcinoma Cell Function via AKT/mTOR Pathway. Journal of Cellular and Mo-lecular Medicine, 24, 7778-7788.
https://doi.org/10.1111/jcmm.15409
[37] Mao, M., Cheng, Y., Yang, J., et al. (2021) Multifaced Roles of PLAC8 in Cancer. Biomarker Research, 9, 73.
https://doi.org/10.1186/s40364-021-00329-1
[38] El-Sayed, A., Hoelker, M., Rings, F., et al. (2006) Large-Scale Transcriptional Analysis of Bovine Embryo Biopsies in Relation to Pregnancy Success after Transfer to Recipients. Physiological Genomics, 28, 84-96.
https://doi.org/10.1152/physiolgenomics.00111.2006
[39] Gómez, E., Caamaño, J., Bermejo-Alvarez, P., et al. (2009) Gene Expression in Early Expanded Parthenogenetic and in Vitro Fertilized Bovine Blastocysts. The Journal of Reproduction and Development, 55, 607-614.
https://doi.org/10.1262/jrd.09-077M
[40] Ghanem, N., Salilew-Wondim, D., Gad, A., et al. (2011) Bovine Blasto-cysts with Developmental Competence to Term Share Similar Expression of Developmentally Important Genes although Derived from Different Culture Environments. Reproduction (Cambridge, England), 142, 551-164.
https://doi.org/10.1530/REP-10-0476
[41] Li, M., Liu, D., Wang, L., et al. (2016) Expression of Placenta-Specific 8 in Human Oocytes, Embryos, and Models of in Vitro Implantation. Fertility and Sterility, 106, 781-789.e2.
https://doi.org/10.1016/j.fertnstert.2016.05.018
[42] El-Sheikh Ali, H., Scoggin, K., Linhares Boakari, Y., et al. (2021) Kinetics of Placenta-Specific 8 (PLAC8) in Equine Placenta during Pregnancy and Placentitis. Theriogenology, 160, 81-89.
https://doi.org/10.1016/j.theriogenology.2020.10.041
[43] Chang, W.L., Liu, Y.W., Dang, Y.L., et al. (2018) PLAC8, a New Marker for Human Interstitial Extravillous Trophoblast Cells, Promotes Their Invasion and Migration. Development, 145, dev148932.
https://doi.org/10.1242/dev.148932
[44] DaSilva-Arnold, S., James, J., Al-Khan, A., et al. (2015) Differentiation of First Trimester Cytotrophoblast to Extravillous Trophoblast Involves an Epithelial-Mesenchymal Transition. Placenta, 36, 1412-1418.
https://doi.org/10.1016/j.placenta.2015.10.013
[45] Kam, E., Gardner, L., Loke, Y., et al. (1999) The Role of Trophoblast in the Physiological Change in Decidual Spiral Arteries. Human Reproduction (Oxford, England), 14, 2131-2138.
https://doi.org/10.1093/humrep/14.8.2131
[46] Pijnenborg, R., Dixon, G., Robertson, W.B., et al. (1980) Trophoblastic Invasion of Human Decidua from 8 to 18 Weeks of Pregnancy. Placenta, 1, 3-19.
https://doi.org/10.1016/S0143-4004(80)80012-9
[47] Zhang, Y., Hu, Q., Li, G., et al. (2018) ONZIN Upregulation by Mutant p53 Contributes to Osteosarcoma Metastasis through the CXCL5-MAPK Signaling Pathway. Cellular Physi-ology and Biochemistry, 48, 1099-1111.
https://doi.org/10.1159/000491976
[48] Qi, C., Hong, L., Cheng, Z., et al. (2016) Identification of Metasta-sis-Associated Genes in Colorectal Cancer Using metaDE and Survival Analysis. Oncology Letters, 11, 568-574.
https://doi.org/10.3892/ol.2015.3956