Wnt信号通路在子宫内膜癌干细胞和EMT中的研究进展
Research Progress of Wnt Signaling in Endometrial Cancer Stem Cancer and EMT
DOI: 10.12677/ACM.2022.125601, PDF, HTML, XML, 下载: 312  浏览: 508  科研立项经费支持
作者: 赵慧珍, 马 娇:青海大学研究生院,青海 西宁;张易青*, 郑小影*:青海大学附属医院病理科,青海 西宁
关键词: 子宫内膜癌Wnt信号肿瘤干细胞EMTEndometrial Cancer Wnt Signaling Cancer Stem Cells EMT
摘要: 子宫内膜癌是妇科最致命的恶性肿瘤之一,少数晚期患者的复发、转移面临着巨大的挑战。Wnt信号通路被认为在子宫内膜癌中发挥重要作用,活跃的Wnt信号通路对生殖道的发育至关重要。Wnt信号通路被证明与子宫内膜癌肿瘤干细胞(cancer stem cells, CSCs)、上皮间质转化(epithelial to mesenchymal transition, EMT)等相关。这篇综述将讨论Wnt信号在子宫内膜癌干细胞和上皮间质转化(EMT)中的作用。
Abstract: Endometrial cancer is one of the deadliest malignancies in gynecology, and a small number of pa-tients with advanced stages would face huge challenges in relapse and metastasis. The proposed Wnt signaling pathway is believed to play an important role in endometrial cancer, and the active Wnt signaling pathway is essential for the development of the reproductive tract. The Wnt signaling pathway has been shown to be associated with cancer stem cells (CSCs), epithelial to mesenchymal transition (EMT), and therapeutic resistance. This review will discuss the role of Wnt signaling in endometrial cancer stem cells and epithelial mesenchymal transformation (EMT).
文章引用:赵慧珍, 张易青, 郑小影, 马娇. Wnt信号通路在子宫内膜癌干细胞和EMT中的研究进展[J]. 临床医学进展, 2022, 12(5): 4143-4148. https://doi.org/10.12677/ACM.2022.125601

1. 引言

子宫内膜癌是最常见的女性生殖系统肿瘤,其发生受雌孕激素、高血压、糖尿病、绝经晚、肥胖等的影响,其中雌孕激素的水平对子宫内膜癌的发生至关重要 [1]。根据临床特点,将子宫内膜癌分为I型和II型,其中I型的预后较II型好 [2]。尽管Bokhman的二元模型仍然适用于临床实践,但由于科学研究者对分子机制研究的深入和基因测序技术的成熟,癌症基因组图谱(TCGA)根据它们的总体突变提出了一种分子分类,POLE超突变型,微卫星不稳定型,低拷贝数型及高拷贝数型,其中POLE超突变型预后最佳 [3]。目前子宫内膜癌的治疗主要为手术加放、化疗,大多数患者的预后好,但仍有少数的患者发现疾病时已经处于晚期,并且更易转移及复发,导致患者生存率显著降低。有研究提出,肿瘤干细胞和EMT的存在被认为是导致肿瘤异质性、耐药性和转移复发的主要原因 [4]。但随着肿瘤发生发展机制的细化,Wnt、Notch、Hedgehog、TGF-β和Hippo等多种信号通路被证实在调节人类肿瘤CSCs和EMT过程中发挥关键作用 [5]。在这里,我们将回顾Wnt信号在子宫内膜癌干细胞和EMT中的作用。

2. Wnt/β-Catenin信号通路

Wnt信号通路是目前研究最多的信号通路之一,在细胞分化、增殖、生存和迁移等多种生物过程中发挥着重要作用。主要有经典型Wnt通路(Wnt/β-Catenin)和非经典型Wnt通路(平面的细胞极性通路和Wn /Ca2+通路) [5]。经典型的Wnt通路通常对负责细胞增殖、存活和细胞命运决定的靶基因转录。非典型Wnt通路对调节细胞分裂、细胞极性和迁移至关重要。

在正常情况下,细胞内β-catenin水平是由包含糖原合酶激酶3 (GSK3β)和酪蛋白激酶1α (CK1α)、大肠腺瘤息肉蛋白(APC)和轴蛋白(Axin1/2)等多种蛋白形成的“降解复合物”所调节的,其在特定的丝氨酸和苏氨酸残基上结合并磷酸化β-catenin,从而使其泛素化并随后被蛋白酶体降解。相反,当在Wnt配体存在的情况之下,与卷曲蛋白(frizzled, Frz)或低密度脂蛋白受体相关蛋白5/6 (LRP5/6)受体的共激活会阻止“降解复合物”的形成,从而稳定细胞内β-catenin,并最终导致其从细胞质转位到细胞核。同时,β-catenin与T细胞因子/淋巴增强子因子(TCF/LEF)相互作用,并激活Wnt下游调控、增殖和分化的广谱靶基因的表达 [6]。

3. Wnt信号通路在子宫内膜发育中的作用

Wnt信号通路在苗勒管起源的所有结构中(输卵管、子宫和子宫颈)的稳态维持中起着中心作用,活跃的Wnt信号通路对生殖道的发育至关重要 [7]。大量的研究表明,Wnt蛋白在子宫内膜发育中起着关键的作用,例如在小鼠胚胎发育过程中,Wnt4基因在形成子宫内膜的基质细胞中表达,并表明其在子宫内膜基质中的表达要高于在上皮细胞中的表达 [8];Wnt5a蛋白存在于小鼠子宫内膜基质细胞中,经证实在子宫肌层形成区域Wnt5a蛋白数量减少、缺乏;Wnt7a基因表达的雌性小鼠子宫壁变形,卵巢未发育,说明可能对苗勒管的转化产生影响,孕酮介导的Wnt7a基因表达下调可能是子宫内膜由增生期向分泌期转变过程中必不可少 [9] [10] [11]。

研究者除了发现Wnt蛋白在子宫发育过程中的作用之外,Jolanta Kiewisz等人提出了Wnt/β-Catenin 通路参与子宫内膜血管生成的假设,Wnt5a参与了受损内皮细胞的修复,但不参与内皮细胞的增殖和迁移或增加毛细血管长度;Wnt7a可能是内皮细胞在生理性子宫内膜血管生成过程中的趋化因子,是一种上皮源性因子,但这一观点有待进一步验证 [11]。也有研究表示雌激素在月经周期增殖期增强Wnt/β-catenin信号转导,而孕激素抑制Wnt/β-catenin信号转导,抑制雌激素在分泌期的增殖作用,故当暴露于增强或不抵抗雌激素环境中,Wnt/β-catenin信号在子宫内膜的组成性激活会引发子宫内膜增生,并可能进一步发展为EC [12] [13]。此外,Gunin AG等人使用可能抑制 WNT/β-catenin 信号传导并诱导雌激素介导的子宫内膜细胞增殖和增生进而发生形态学的改变 [14]。

总而言之,Wnt/β-catenin 信号通路可能调节子宫内膜增殖和分化的过程,确定针对这一信号通路的治疗策略在与癌症的斗争中变得越来越重要,Wnt/β-catenin信号通路的异常激活或中断导致肿瘤转化,这有助于子宫内膜形态学的进一步发展。

4. Wnt信号通路在子宫内膜癌干细胞中的作用

CSCs是在肿瘤群体中能够自我更新、异常分化、产生耐药和逃脱稳态的一小部分细胞,并被认为是肿瘤发生和发展的起源 [1],支持CSCs理论的第一个证据来自Virchow和Cohnheim的研究 [15]。CSCs几乎存在于各个肿瘤中,如乳腺癌、前列腺癌、胰腺癌、结直肠癌、胃癌等 [16],随着CSCs生物学研究知识的不断增加,这将为肿瘤靶向治疗开辟新的框架,而且能够减少疾病复发的机会。Carvalho等人提出子宫内膜癌肿瘤干细胞的起源可能与3种类型的细胞有关:正常/成熟肿瘤干细胞、体细胞和具有分化能力的肿瘤细胞 [1]。CSCs的多种特性受到Wnt、Notch和Hedgehog等多种途径的调节,其中最受关注的就是Wnt通路。Kusanoki等发现,在子宫内膜癌中Wnt信号的下调导致子宫内膜CSCs的增殖和迁移受到抑制 [17]。Axin2作为一个经典的Wnt报告基因,被确定为子宫内膜肿瘤发生的启动子,Syed等人研究发现Axin2+子宫内膜干细胞在致癌刺激下很容易转化为子宫内膜癌细胞 [18]。

除外Wnt信号的受体介导之外,Lu等人表示SPARC家族成员之一分泌模块化钙结合蛋白-2 (SMOC-2)在子宫内膜CSCs中表达更高,且与CD44和CD133的表达呈正相关。他们还证实了激活子宫内膜CSCs中的Wnt/β-catenin通路,并与顺铂和紫杉醇耐药有关 [19]。除此之外,Weiqiang Zhou等人提出SOX17,SOX17通过抑制了子宫内膜癌细胞中的Wnt/β-catenin信号通路及EMT,从而阻止子宫内膜癌细胞迁移 [20]。在子宫内膜癌的治疗方面,Büşra Karaca等人通过研究他莫西芬和喹唑啉衍生物多沙唑嗪和厄洛替尼在人子宫内膜癌细胞中的细胞毒性和凋亡作用,以及它们在ERα和Wnt/β-catenin信号通路中的作用,表明两者在ERα信号通路中发挥重要作用,并可作为子宫内膜癌细胞Wnt/β-catenin信号通路中PKA或酪氨酸激酶的有效抑制剂并且可能具有治疗人类子宫内膜癌的潜力 [21],故阻断这一信号通路,这将对子宫内膜癌的治疗有着极其深远的意义。

综上所述,肿瘤干细胞标志物及Wnt信号受体通过激活或者抑制Wnt/β-catenin进一步在子宫内膜癌中发挥其转移、复发及耐药的特性。

5. Wnt信号通路和EMT在子宫内膜癌中的作用

EMT是可逆性发育过程,癌细胞将具有粘附性的上皮表型可逆地转换为具有更具运动性的间充质状态,其包括上皮细胞标志物E-cadherin、ZO1等,间质细胞标志物Vimentin、N-cadherin等 [22]。除了运动性和侵袭性特征外,EMT在功能上还与获得干细胞样特征、抵抗治疗和免疫抑制相关 [23] [24]。EMT涉及多种信号通路,包括转化生长因子β (TGF-β)、Notch和Wnt/β-catenin。Wnt/β-catenin通路的激活已被证明在许多不同类型的癌症中是EMT的重要调节因子 [25] [26],本文主要阐述的是子宫内膜癌中的作用。

YUN LIAO等人提到Wnt受体Frizzled2 (Fzd2)在子宫内膜癌中过表达Fzd2可激活典型Wnt信号通路,提高β-catenin蛋白水平,诱导发生EMT致使肿瘤发生转移 [27]。纤维蛋白4 (fibulin-4)是一种细胞外糖蛋白,在弹性纤维组装中发挥重要作用,Tiantian Wang等人通过PCR、Western Blot、IHC等检测,发现正常子宫内膜组织和细胞中fibulin-4的表达明显高于子宫内膜癌组织和细胞。还利用Wnt信号通路抑制剂和激活剂也检测了fibulin-4在Wnt/β-catenin通路中的作用以及与上皮–间质转化(EMT)的关系,这些数据同时表明,fibulin-4的下调可以激活Wnt信号通路,进而促进EMT;相反,增加fibulin-4可抑制Wnt信号通路,防止EMT发生 [28]。近年来,microRNAs (miRNAs)成为研究热点。因为miRNAs通过调控靶基因的表达对人类癌症的进展有重要的作用其中,发现了许多调控子宫内膜癌进展的miRNAs,如miR-202和miR-373等。miR-202通过靶向FGF2抑制EC细胞迁移和侵袭以及EMT。由于miR-202能够抑制EC细胞的转移,因此miR-202表达的变化可作为EC的诊断指标 [29];miR-373在子宫内膜癌中上调,预示着子宫内膜癌患者的不良预后,其通过靶向LATS2和激活Wnt/β-Catenin通路在子宫内膜癌中具有致癌作用 [30]。

总的来说,从Wnt信号通路受体到热门的microRNAs无一不都说明Wnt信号通路和EMT在子宫内膜癌中的关键作用。阐明EMT在转移形成过程中内外机制的复杂网络以及Wnt信号在其中的作用是未来研究的一个重要挑战。

6. 结语

相当多的证据支持Wnt信号在子宫内膜癌干细胞、转移中发挥的作用。尽管目前有潜力和创新的治疗策略专门针对Wnt通路,但癌细胞的可塑性仍然是导致治疗耐药性的逃逸机制。此外,由于Wnt在组织稳态和再生方面的重要作用,其抑制可能导致不良事件的发生。因此,识别和阐明推动子宫内膜癌进展的内在和外在机制的复杂网络是未来研究的主要挑战。

基金项目

青海省科学技术厅基础研究计划项目(编号2022-ZJ-755)。

NOTES

*通讯作者。

参考文献

[1] Carvalho, M.J., Laranjo, M., Abrantes, A.M., Torgal, I., Botelho, M.F. and Oliveira, C.F. (2015) Clinical Translation for Endometrial Cancer Stem Cells Hypothesis. Cancer and Metastasis Reviews, 34, 401-416.
https://doi.org/10.1007/s10555-015-9574-0
[2] Suarez, A.A., Felix, A.S. and Cohn, D.E. (2017) Bokhman Re-dux: Endometrial Cancer “Types” in the 21st Century. Gynecologic Oncology, 144, 243-249.
https://doi.org/10.1016/j.ygyno.2016.12.010
[3] Cancer Genome Atlas Research Network, Kandoth, C., Schultz, N., Cherniack, A.D., Akbani, R., Liu, Y., Shen, H., Robertson, A.G., Pashtan, I., Shen, R., Benz, C.C., Yau, C., Laird, P.W., Ding, L., Zhang, W., Mills, G.B., Kucherlapati, R., Mardis, E.R. and Levine, D.A. (2013) Integrated Genomic Characterization of Endometrial Carcinoma. Nature, 497, 67-73.
https://doi.org/10.1038/nature12113
[4] Alabiad, M.A., Harb, O.A., Hefzi, N., Ahmed, R.Z., Osman, G., Shalaby, A.M., Alnemr, A.A. and Saraya, Y.S. (2021) Prog-nostic and Clinicopathological Significance of TMEFF2, SMOC-2, and SOX17 Expression in Endometrial Carcinoma. Experimental and Molecular Pathology, 122, Article ID: 104670.
https://doi.org/10.1016/j.yexmp.2021.104670
[5] Song, Y., Pan, S., Li, K., Chen, X., Wang, Z.P. and Zhu, X. (2021) Insight into the Role of Multiple Signaling Pathways in Regulating Cancer Stem Cells of Gynecologic Cancers. Seminars in Cancer Biology, In Press.
https://doi.org/10.1016/j.semcancer.2021.06.001
[6] Katoh, M. and Katoh, M. (2017) Molecular Genetics and Targeted Therapy of WNT-Related Human Diseases (Review). International Journal of Molecular Medicine, 40, 587-606.
https://doi.org/10.3892/ijmm.2017.3071
[7] Cunnea, P., Fotopoulou, C., Ploski, J., Trillsch, F., Mah-ner, S. and Kessler, M. (2021) Changes in Stem Cell Regulation and Epithelial Organisation during Carcinogenesis and Disease Progression in Gynaecological Malignancies. Cancers, 13, Article No. 3349.
https://doi.org/10.3390/cancers13133349
[8] Hou, X., Tan, Y., Li, M., Dey, S.K. and Das, S.K. (2004) Canonical Wnt Signaling Is Critical to Estrogen-Mediated Uterine Growth. Molecular Endocrinology, 18, 3035-3049.
https://doi.org/10.1210/me.2004-0259
[9] Miller, C. and Sassoon, D.A. (1998) Wnt-7a Maintains Appropriate Uterine Patterning during the Development of the Mouse Female Reproductive Tract. Development, 125, 3201-3211.
https://doi.org/10.1242/dev.125.16.3201
[10] Boretto, M., Cox, B., Noben, M., Hendriks, N., Fassbender, A., Roose, H., Amant, F., Timmerman, D., Tomassetti, C., Vanhie, A., Meuleman, C., Ferrante, M. and Vankelecom, H. (2017) Development of Organoids from Mouse and Human Endometrium Showing Endometrial Epithelium Physiology and Long-Term Expandability. Development, 144, 1775-1786.
https://doi.org/10.1242/dev.148478
[11] Kiewisz, J., Wasniewski, T. and Kmiec, Z. (2015) Participation of WNT and β-Catenin in Physiological and Pathological Endometrial Changes: Association with Angiogenesis. BioMed Research International, 2015, Article ID: 854056.
https://doi.org/10.1155/2015/854056
[12] Wang, Y., van der Zee, M., Fodde, R. and Blok, L.J. (2010) Wnt/Β-Catenin and Sex Hormone Signaling in Endometrial Homeostasis and Cancer. Oncotarget, 1, 674-684.
https://doi.org/10.18632/oncotarget.201
[13] Wang, Y., Hanifi-Moghaddam, P., Hanekamp, E.E., Kloosterboer, H.J., Franken, P., Veldscholte, J., van Doorn, H.C., Ewing, P.C., Kim, J.J., et al. (2009) Progesterone Inhibition of Wnt/Beta-Catenin Signaling in Normal Endometrium and Endometrial Cancer. Clinical Cancer Research, 15, 5784-5793.
https://doi.org/10.1158/1078-0432.CCR-09-0814
[14] Gunin, A.G., Emelianov, V.U., Mironkin, I.U., Morozov, M.P. and Tolmachev, A.S. (2004) Lithium Treatment Enhances Estradiol-Induced Proliferation and Hyperplasia For-mation in the Uterus of Mice. European Journal of Obstetrics & Gynecology and Reproductive Biology, 114, 83-91.
https://doi.org/10.1016/j.ejogrb.2003.09.023
[15] Sell, S. (2004) Stem Cell Origin of Cancer and Differentiation Therapy. Critical Reviews in Oncology/Hematology, 51, 1-28.
https://doi.org/10.1016/j.critrevonc.2004.04.007
[16] Kuşoğlu, A. and Biray Avcı, Ç. (2019) Cancer Stem Cells: A Brief Review of the Current Status. Gene, 681, 80-85.
https://doi.org/10.1016/j.gene.2018.09.052
[17] Kusunoki, S., Kato, K., Tabu, K., Inagaki, T., Okabe, H., Kaneda, H., Suga, S., Terao, Y., Taga, T. and Takeda, S. (2013) The Inhibitory Effect of Salinomycin on the Proliferation, Migra-tion and Invasion of Human Endometrial Cancer Stem-Like Cells. Gynecologic Oncology, 129, 598-605.
https://doi.org/10.1016/j.ygyno.2013.03.005
[18] Syed, S.M., Kumar, M., Ghosh, A., Tomasetig, F., Ali, A., Whan, R.M., Alterman, D. and Tanwar, P.S. (2020) Endometrial Axin2+ Cells Drive Epithelial Homeostasis, Regenera-tion, and Cancer Following Oncogenic Transformation. Cell Stem Cell, 26, 64-80.E13.
https://doi.org/10.1016/j.stem.2019.11.012
[19] Lu, H., Ju, D.D., Yang, G.D., Zhu, L.Y., Yang, X.M., Li, J., Song, W.W., Wang, J.H., Zhang, C.C., Zhang, Z.G. and Zhang, R. (2019) Targeting Cancer Stem Cell Signature Gene SMOC-2 Overcomes Chemoresistance and Inhibits Cell Proliferation of Endometrial Carcinoma. EBioMedicine, 40, 276-289.
https://doi.org/10.1016/j.ebiom.2018.12.044
[20] Zhou, W., Wang, K., Wang, J., Qu, J., Du, G. and Zhang, Y. (2019) SOX17 Inhibits Tumor Metastasis via Wnt Signaling in Endometrial Cancer. OncoTargets and Ther-apy, 12, 8275-8286.
https://doi.org/10.2147/OTT.S220536
[21] Karaca, B., Bakır, E., Yerer, M.B., Cumaoğlu, A., Hamurcu, Z. and Eken, A. (2021) Doxazosin and Erlotinib Have Anticancer Effects in the Endometrial Cancer Cell and Important Roles in ERα and Wnt/β-Catenin Signaling Pathways. Journal of Biochemical and Molecular Toxicology, 35, e22905.
https://doi.org/10.1002/jbt.22905
[22] Nieto, M.A., Huang, R.Y., Jackson, R.A. and Thiery, J.P. (2016) EMT: 2016. Cell, 166, 21-45.
https://doi.org/10.1016/j.cell.2016.06.028
[23] Smith, B.N. and Bhowmick, N.A. (2016) Role of EMT in Metasta-sis and Therapy Resistance. Journal of Clinical Medicine, 5, 17.
[24] Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., Campbell, L.L., Polyak, K., Brisken, C., Yang, J. and Weinberg, R.A. (2008) The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell, 133, 704-715.
https://doi.org/10.1016/j.cell.2008.03.027
[25] Wu, Z.Q., Li, X.Y., Hu, C.Y., Ford, M., Kleer, C.G. and Weiss, S.J. (2012) Canonical Wnt Signaling Regulates Slug Activity and Links Epithelial-Mesenchymal Transition with Epigenetic Breast Cancer 1, Early Onset (BRCA1) Repression. Proceedings of the National Academy of Sciences of the United States of America, 109, 16654-16659.
https://doi.org/10.1073/pnas.1205822109
[26] Yook, J.I., Li, X.Y., Ota, I., Fearon, E.R. and Weiss, S.J. (2005) Wnt-Dependent Regulation of the E-Cadherin Repressor Snail. Journal of Biological Chemistry, 280, 11740-11748.
https://doi.org/10.1074/jbc.M413878200
[27] Bian, Y., Chang, X., Liao, Y., Wang, J., Li, Y., Wang, K. and Wan, X. (2016) Promotion of Epithelial-Mesenchymal Transition by Frizzled2 Is Involved in the Metastasis of Endometrial Cancer. Oncology Reports, 36, 803-810.
https://doi.org/10.3892/or.2016.4885
[28] Wang, T., Wang, M., Fang, S., Wang, Q., Fang, R. and Chen, J. (2017) Fibulin-4 Is Associated with Prognosis of Endometrial Cancer Patients and Inhibits Cancer Cell Invasion and Metastasis via Wnt/β-Catenin Signaling Pathway. Oncotarget, 8, 18991-19012.
https://doi.org/10.18632/oncotarget.15086
[29] Chen, P., Xing, T., Wang, Q., Liu, A., Liu, H., Hu, Y., Ji, Y., Song, Y. and Wang, D. (2019) MicroRNA-202 Inhibits Cell Migration and Invasion through Targeting FGF2 and Inac-tivating Wnt/β-Catenin Signaling in Endometrial Carcinoma. Bioscience Reports, 39, BSR20190680.
https://doi.org/10.1042/BSR20190680
[30] Li, Y., Sun, D., Gao, J., Shi, Z., Chi, P., Meng, Y., Zou, C. and Wang, Y. (2018) MicroRNA-373 Promotes the Development of Endometrial Cancer by Targeting LATS2 and Activating the Wnt/β-Catenin Pathway. Journal of Cellular Biochemistry, 120, 8611-8618.
https://doi.org/10.1002/jcb.28149