基于硫化镉的镍基光催化产氢助催化剂的研究进展
Research Progress of Nickel-Based Photocatalytic Hydrogen Production Cocatalysts Based on Cadmium Sulfide
DOI: 10.12677/OJNS.2022.103031, PDF, HTML, XML, 下载: 361  浏览: 1,574 
作者: 李旺轩:武汉工程大学化学与环境工程学院,绿色化工过程教育部重点实验室,新型反应器与绿色化学工艺湖北 省重点实验室,湖北 武汉
关键词: 助催化剂硫化镉光催化产氢Nickel Cocatalyst Cadmium Sulfide Photocatalysis Hydrogen Evolution
摘要: 硫化镉(CdS)因其具有良好的可见光响应能力和合适的导带位置,已被广泛应用于光催化产氢研究中。然而,单一CdS材料存在载流子复合较快及表面缺乏产氢活性位点等问题,极大地限制了其应用。在CdS表面负载助催化剂能够改善其表面的光生载流子的迁移行为,从而提升其光催化活性。在众多助催化剂中,过渡金属镍及化合物由于低成本、易合成且具有较好的析氢能力等特点而备受关注。本文主要介绍了基于CdS设计和制备的镍基光催化产氢助催化剂,阐述了其对CdS产氢活性的提升机制,最后对镍基助催化剂的发展方向进行了展望。
Abstract: Cadmium sulfide (CdS) has been widely used in photocatalytic hydrogen production due to its excellent visible light response and suitable conduction band position. CdS has some disadvantages such as rapid carrier recombination and insufficient hydrogen-producing active sites on the surface, which largely limits its application in photocatalysis. Loading the cocatalyst on the surface of CdS is an effective method to improve the migration behavior of photogenerated carriers on the surface, which can eventually enhance its photocatalytic activity. The transition metal nickel and its compounds acting as cocatalyst have received intensive attention because of their low cost, facile preparation and high performance in hydrogen evolution reaction. This review mainly introduces the design and preparation of nickel-based photocatalytic hydrogen production cocatalyst based on CdS, and expounds its mechanism of improving the hydrogen production activity of CdS. Finally, the development direction of Ni-based cocatalysts is prospected.
文章引用:李旺轩. 基于硫化镉的镍基光催化产氢助催化剂的研究进展[J]. 自然科学, 2022, 10(3): 246-253. https://doi.org/10.12677/OJNS.2022.103031

1. 引言

半导体光催化产氢技术利用太阳能将水分解产生氢能,是解决全球能源和环境问题的有效手段 [1]。1972年Fujishima和Honda发现Pt/TiO2电极在紫外光照射下,可以分解水从而产生氢气和氧气 [2]。自此,人们对半导体光催化分解水技术的研究拉开了序幕。在过去的40年里,各种半导体光催化剂被设计和开发用于光催化产氢。其中,ZrO2、ZnS、TiO2、ZnO和SiC为宽带隙半导体,这些半导体只能利用紫外区的光进行光催化反应。而太阳光中紫外光只占5% [3],使得这类半导体对太阳能的利用率较低,实际应用前景不佳。Cu2O具有合适的导带位置,但由于其化学稳定性差,限制了其应用。CdS和g-C3N4都具有适合光催化水分解的带隙能量和带边位置。与g-C3N4相比,CdS由于其更窄的带隙和合适的导带和价带位置,在可见光区域具有更广泛的吸收。因此,CdS被认为是一种较为理想的光催化产氢催化剂,备受研究者的关注。

然而,纯CdS材料光生电子与空穴对复合机率较高,载流子迁移效率低,并且材料表面缺乏催化产氢活性位点等,使得其光催化活性受到限制 [4]。因此,如何提升CdS材料载流子的分离和迁移效率,使更多的光生电子迁移到材料表面参与产氢过程是解决单一CdS光催化产氢活性低的关键。引入助催化剂是一种有效的提升光生电子与空穴分离效率的方法,能够引导光生载流子定向迁移至材料表面参与催化反应 [5]。一方面,助催化剂在材料表面可以促进材料中光生载流子迁移 [6];另一方面,也可以作为催化反应的活性中心参与表面催化反应,通过改变反应路径,降低析氢反应的活化能,从而提升光催化产氢活性 [7]。本文主要综述了CdS光催化产氢助催化剂的研究进展,并对镍基助催化剂的种类进行了归纳,最后对该类镍基助催化剂的发展方向进行了展望。

2. 助催化剂

按照所含元素种类,助催化剂可分为金属基助催化剂和非金属基助催化剂。其中,金属基助催化剂可分为贵金属基助催化剂和非贵金属基助催化剂。

2.1. 金属助催化剂

贵金属及其化合物已被广泛作为助催化剂,应用于光催化产氢,诸如Au [8] [9]、Pd [10] [11]、Pt [12] 等。Li等人 [9] 通过在CdS表面负载16 nm的Au纳米颗粒,使得催化剂的产氢速率达到6385 μmol·g−1·h−1。由于表面等离子共振(SPR)效应,与3 nm的Au纳米颗粒相比,较大的Au纳米颗粒(16 nm和45 nm)显著提高了CdS的光催化析氢活性。Wang等人 [10] 成功合成出单原子Pd修饰的CdS,并使得硫化镉的活性提升了110倍。密度泛函理论(DFT)表明,复合催化剂的能量势垒较低,容易在表面形成H*中间体,促进氢气的产生。

引入贵金属能显著提升CdS的光催化产氢活性,但其较高的成本限制了他们的实际应用。过渡金属中的非贵金属(Fe [13] [14] [15]、Co [16] [17]、Ni [18] [19] [20] 等)由于其成本低、丰富的地球储量以及不弱于贵金属的催化活性等特点,逐渐成为贵金属产氢助催化剂的替代品。Gao等人 [14] 将Fe3C与CdS简单复合,提高了Fe3C与CdS界面的电荷迁移速率,从而提升CdS的光催化产氢活性。Fe3C/CdS的析氢速率比纯CdS纳米棒高15倍,表观量子效率为11.5% (420 nm)。Chen等人 [17] 通过简单高效的原位光沉积法,将Co负载在CdS上。当Co负载量为1 wt%时,样品的产氢速率最高可达1299 μmol·h−1,是纯CdS的17倍。Co不仅可以有效促进CdS光生载流子的分离,也可以作为产氢反应的活性位点,降低析氢过电位,从而提高光催化产氢活性。Cui等人 [6] 在Ni-MOF空心金属–有机骨架(Ni-MOF)球表面原位生长CdS纳米颗粒,成功合成了CdS/Ni-MOF光催化剂。当CdS在MOF表面的负载量为40 wt%时,复合材料在可见光下的产氢速率为2508 μmol·g−1·h−1,为CdS的8倍。CdS中光生电子可以迅速转移到Ni-MOF上,同时Ni-MOF上含有高度分散的Ni2+,可以作为反应的活性位点。

2.2. 非金属助催化剂

用于光催化产氢的非金属助催化剂中,常见的是各种含碳材料(如石墨烯 [21] 和碳量子点 [22] [23])及黑磷 [24]。Li等人 [21] 以氧化石墨烯(GO)为载体,通过溶剂热法制备了CdS修饰的石墨烯纳米片。合成的CdS均匀分散在石墨烯表面,提高了光生电子从CdS向石墨烯的迁移速率。当石墨烯的最佳含量为1.0 wt%时,氢气的产率为1.12 mmol·h−1,是纯CdS的4.87倍。Peela等人 [23] 将碳量子点(CQD)引入到CdS纳米线中,能提高CdS中光生电子空穴对的分离效率。0.4CQD/CdS样品的光催化产氢速率最高,为309 mmol·g−1·h−1,为单一CdS的1.5倍。Chen等人 [25] 合成了黑磷量子点/CdS (BPQDs/CdS)复合材料。当BPQDs负载量为3 wt%时,复合材料具有最佳的光催化产氢速率,达到9.9 mmol·g−1·h−1,分别是BPQDs和CdS的99倍和5.5倍。在BPQDs/CdS复合材料中,由于CdS和BPQDs之间的界面强相互作用,大大提高材料中光生电子空穴对的分离效率,从而提升了光催化产氢活性。

在众多助催化剂中,贵金属助催化剂由于其成本较高而限制了其发展,碳材料由于其复杂的制备过程严重限制了它们的广泛应用。近年来,过渡金属镍基、钴基和铁基助催化剂以其低成本、资源丰富、高稳定性和催化活性等优点在光催化领域受到了广泛关注。

3. 镍基助催化剂

镍基助催化剂由于其结构稳定、制备简单、析氢反应(HER)活性较高等特点,已有大量含Ni材料被广泛用作光催化产氢的助催化剂。

3.1. 金属镍助催化剂

相比于块状金属镍,镍纳米颗粒具有更大的比表面积和更多的活性位点,更利于电荷转移和界面化学反应 [26]。Wang等人 [27] 通过简单的还原法,将10 nm的镍纳米颗粒修饰在CdS上。当Ni的含量为4 wt%时,Ni/CdS的产氢速率可以达到25.85 mmol·g−1·h−1,量子效率为26.8% (420 nm)。最近,单原子镍也被开发用作光催化产氢助催化剂。Zhang等人 [28] 通过简单的光化学方法,制备了原子分散Ni负载的CdS光催化剂。当Ni的负载量为2.85 wt%时,Ni/CdS的光催化产氢速率高达326.7 mmol·g−1·h−1。DFT结果表明,在CdS上引入单个Ni原子可以降低CdS对H*的吸附自由能,使得Ni/CdS复合材料更容易吸附H*和解吸氢气,从而大大提高了CdS的光催化产氢活性。单个Ni原子位于氮掺杂石墨烯(NG)的空位上 [29],当Ni原子的负载量为0.0013 wt%时,Ni-NG/CdS的光催化性能比NG/CdS高3.4倍。Ni-NG/CdS在420 nm处的量子效率高达48.2%,是无贵金属助催化剂中量子效率最高的一种。其优异的光催化活性主要是由于单Ni原子存在于在氮掺杂石墨烯的空位上,可以提供更多的活性位点,显著降低了光催化产氢过程的活化能。这些结果表明,金属镍可作为产氢反应的活性位点,影响了反应路径,降低反应能垒,从而提高光催化产氢活性。

3.2. 氢氧化镍助催化剂

镍的氢氧化物同样能作为助催化剂与半导体结合提高其光催化产氢活性。Mao等人 [30] 将超薄Ni(OH)2纳米片修饰在CdS纳米棒的表面,Ni(OH)2/CdS复合材料的光催化产氢速率为40.18 mmol·g−1·h−1,量子效率高达66.1% (420 nm),约为1.25 wt% Pt/CdS活性的1.5倍。借助时间分辨荧光,说明了Ni(OH)2能延长CdS光生电子寿命,提高载流子的分离效率,并且Ni(OH)2超薄纳米片能提供反应活性位点,提高了光催化活性。Zhang等人 [31] 通过光沉积法合成了Ni-Ni(OH)2复合材料,并将其作为CdS的助催化剂用于光催化产氢。在可见光下,Ni-Ni(OH)2/CdS在Na2S/Na2SO3水溶液中产氢速率为428 mmol·g−1·h−1,并具有较好的稳定性。此外,Ni-Ni(OH)2/CdS在40 vol%甘油中仍有良好的光催化产氢活性(13.3 mmol·g−1·h−1)。Ni-Ni(OH)2/CdS具有优异光催化产氢性能主要是由于Ni和Ni(OH)2的协同作用。Zhuang等人 [32] 将Ni基助催化剂修饰在CdS纳米棒表面,制备了不同的CdS纳米棒复合材料,其中Ni(OH)2/CdS样品的产氢活性最高,平均产氢速率可达0.79 mmol·g−1·h−1,约为单一CdS的2.5倍。Ni(OH)2助催化剂能促进光生电子的迁移,并提供了更多的活性位点。另外,Ni(OH)2/CdS样品的过电位较小,利于质子还原成H2

3.3. 硫化镍助催化剂

硫化镍(NiS、NiS2、Ni3S2),由于具有带隙窄和导电性高等特点,已被广泛用作光催化产氢助催化剂 [33] [34] [35]。Ke等人 [36] 通过光沉积法合成了硫化镍/硫化镉–二乙烯三胺纳米片(NiS/CdS-DETA)。在可见光照射下,NiS/CdS-DETA复合光催化剂的产氢速率达到230.6 μmol·h−1,分别是单组分CdS和CdS-DETA材料的8.42倍和1.72倍,甚至高于Pt/CdS和Pt/CdS-DETA,表明NiS是一种可以替代Pt的助催化剂。引入NiS可以促进光生电子–空穴对的分离和转移,降低产氢反应的过电位。Li等人[34]合成了NiS2纳米颗粒修饰的CdS纳米线。在乳酸为牺牲剂的条件下,40%-NiS2/CdS的产氢速率可达14.49 mmol·g−1·h−1,远远高于纯CdS。瞬态吸收光谱结果表明,40%-NiS2/CdS复合材料的载流子寿命远短于CdS纳米线,说明光生电子能有效地从CdS转移至NiS2,从而提高光催化性能。Guan等人 [37] 通过一锅水热法成功在泡沫镍上合成核壳CdS@Ni3S2纳米棒阵列(CSNC)。其中,Ni3S2作为助催化剂的外层可以保护CdS材料免受光腐蚀,增强CdS@Ni3S2复合光催化剂的稳定性,提高CdS的光催化产氢性能。在475 nm单色光照射下,CdS@Ni3S2复合光催化剂的表观量子效率为1.36%。

3.4. 磷化镍助催化剂

近年来,由于磷化镍具有独特的金属性质和良好的导电性,已被应用到光催化、电催化和光电催化等领域 [38] [39] [40]。Wang等人 [41] 采用溶剂热法在CdS纳米棒上生长Ni2P纳米颗粒,合成的Ni2P/CdS复合材料平均析氢速率为34.9 mmol·g−1·h−1,是纯CdS纳米棒的23倍。Ni2P与CdS界面结合紧密,使得电子转移路径缩短,有利于光生电子迁移至Ni2P,促进光催化产氢过程。此外,Sun等人 [42] 同样将Ni2P修饰在CdS纳米棒上。Ni2P/CdS的产氢速率最高可达1200 μmol·mg−1·h−1,表观量子效率达到41% (450 nm)。同时,采用稳态荧光和时间分辨光致发光光谱来探索载流子的转移过程,结果表明光生电子能够迅速地从CdS纳米棒转移到Ni2P表面,促进了光生电子空穴对的分离和迁移,进而还原质子生成H2

3.5 其他镍基助催化剂

其他镍基助催化剂包括NiSe [43]、NiSe2 [44] [45] [46] 和Ni3N [47] 材料。Irfan等人 [43] 通过简单的合成方法得到NiSe,并将NiSe原位沉积在CdS纳米棒表面,形成NiSe/CdS复合材料。在最佳条件下,NiSe/CdS复合材料的光催化产氢速率为340 μmol·h−1,表观量子效率可达12% (420 nm)。光致发光光谱和光电流响应表明,NiSe/CdS光催化剂中存在有效的电子转移。Huang等人 [44] 将NiSe2助催化剂原位生长在CdS纳米棒上。5 wt% NiSe2/CdS的光催化产氢速率为167.1 mmol·g−1·h−1,是单组分CdS纳米棒的2.7倍。由于CdS与NiSe2复合后可以形成一个内置电场,提高载流子的分离和迁移速率,提升了CdS的活性。Sun等人 [47] 制备了Ni3N/CdS光催化剂。在最佳条件下,Ni3N/CdS样品的产氢速率为88 μmol·mg−1·h−1,约是纯CdS样品的10倍。引入Ni3N后,CdS与Ni3N界面电荷转移更快,抑制了载流子的复合,从而提高了产氢活性。

金属镍作为助催化剂时,镍原子作为产氢反应活性位点,能够改变反应路径降低反应能垒,从而提高CdS的光催化产氢活性。选用镍基化合物作助催化剂时,研究者们难以确定其活性位点,对于机理的研究不够深入。因此,在光催化产氢领域中,仍需进一步开发新型的镍基助催化剂。

4. 总结与展望

在硫化镉的众多光催化产氢助催化剂中,镍基材料具有较大的实际应用前景。尽管目前合成了许多高效的镍基助催化剂,但这些助催化剂通常为纳米颗粒,其表面结构难以精准确定,使得研究者们难以确定参与光催化反应的活性中心,长久以来关于光催化产氢反应机制的研究无法深入到分子水平。另外,对于助催化剂与半导体的之间的作用机制模糊不清,极大地限制了高活性光催化产氢催化剂的开发。因此,为了深入理解助催化剂的作用和光催化反应机理,未来应该在以下方面进行深入研究:开发具有精确结构和组成的镍基助催化剂(如单原子或团簇助催化剂);借助原位表征手段来监测微观反应过程。

参考文献

[1] Ganguly, P., Harb, M., Cao, Z., Cavallo, L., Breen, A., Dervin, S., et al. (2019) 2D Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Letters, 4, 1687-1709.
https://doi.org/10.1021/acsenergylett.9b00940
[2] Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.
https://doi.org/10.1038/238037a0
[3] Yan, M., Li, G., Guo, C., Guo, W., Ding, D., Zhang, S., et al. (2016) Wo3-X Sensitized TiO2 Spheres with Full-Spec- trum-Driven Pho-tocatalytic Activities from UV to near Infrared. Nanoscale, 8, 17828-17835.
https://doi.org/10.1039/C6NR06767K
[4] Zhang, T.X., Meng, F.L., Cheng, Y., Dewangan, N., Ho, G.W. and Kawi, S. (2021) Z-Scheme Transition Metal Bridge of Co9S8/Cd/CdS Tubular Heterostructure for Enhanced Photocata-lytic Hydrogen Evolution. Applied Catalysis B-Environmental, 286, Article ID: 119853.
https://doi.org/10.1016/j.apcatb.2020.119853
[5] Yang, J., Wang, D., Han, H. and Li, C. (2013) Roles of Cocata-lysts in Photocatalysis and Photoelectrocatalysis. Accounts of Chemical Research, 46, 1900-1909.
https://doi.org/10.1021/ar300227e
[6] Guo, J., Liang, Y., Liu, L., Hu, J., Wang, H., An, W., et al. (2020) No-ble-Metal-Free CdS/Ni-MOF Composites with Highly Efficient Charge Separation for Photocatalytic H2 Evolution. Ap-plied Surface Science, 522, Article ID: 146356.
https://doi.org/10.1016/j.apsusc.2020.146356
[7] Gao, D., Xu, J., Chen, F., Wang, P. and Yu, H. (2022) Unsatu-rated Selenium-Enriched MoSe2+x Amorphous Nanoclusters: One-Step Photoinduced Co-Reduction Route and Its Boosted Photocatalytic H2-Evolution Activity for TiO2. Applied Catalysis B: Environmental, 305, Article ID: 121053.
https://doi.org/10.1016/j.apcatb.2021.121053
[8] Shen, P.C., Zhao, S., Su, D., Li, Y. and Orlov, A. (2012) Out-standing Activity of Sub-Nm Au Clusters for Photocatalytic Hydrogen Production. Applied Catalysis B-Environmental, 126, 153-160.
https://doi.org/10.1016/j.apcatb.2012.07.021
[9] Xu, J., Yang, W.M., Huang, S.J., Yin, H., Zhang, H., Radjeno-vic, P., et al. (2018) CdS Core-Au Plasmonic Satellites Nanostructure Enhanced Photocatalytic Hydrogen Evolution Re-action. Nano Energy, 49, 363-371.
https://doi.org/10.1016/j.nanoen.2018.04.048
[10] Li, W., Chu, X., Wang, F., Dang, Y., Liu, X., Ma, T., et al. (2022) Pd Single-Atom Decorated CdS Nanocatalyst for Highly Efficient Overall Water Splitting under Simulated Solar Light. Applied Catalysis B: Environmental, 304, Article ID: 121000.
https://doi.org/10.1016/j.apcatb.2021.121000
[11] Zhang, S., Liang, M. and Song, L. (2019) Synthesis of Pd7P3/CdS with High Hydrogen Production Activity in Water Splitting and Enhancement Mechanism under Visible Light Radiation. Materials Chemistry and Physics, 229, 286-293.
https://doi.org/10.1016/j.matchemphys.2019.02.071
[12] Luo, M., Lu, P., Yao, W., Huang, C., Xu, Q., Wu, Q., et al. (2016) Shape and Composition Effects on Photocatalytic Hydrogen Production for Pt-Pd Alloy Cocatalysts. ACS Ap-plied Materials & Interfaces, 8, 20667-20674.
https://doi.org/10.1021/acsami.6b04388
[13] Zhang, J., Zhao, Q., Zhang, J.X., Shi, Y., Huang, C.P., Xia, L.G., et al. (2020) Highly Active FexCo1-xP Cocatalysts Modified CdS for Photocatalytic Hydrogen Production. International Journal of Hydrogen Energy, 45, 22722-22731.
https://doi.org/10.1016/j.ijhydene.2020.06.090
[14] Irfan, R.M., Tahir, M.H., Nadeem, M., Maqsood, M., Bashir, T., Iqbal, S., et al. (2020) Fe3C/CdS as Noble-Metal-Free Composite Photocatalyst for Highly Enhanced Photocatalytic H2 Production under Visible Light. Applied Catalysis A: General, 603, Article ID: 117768.
https://doi.org/10.1016/j.apcata.2020.117768
[15] Liang, Z., Yang, C., Lu, J. and Dong, X. (2021) Ultrathin Fe2P Nanosheet Co-Catalyst CdS Nanorod: The Promising Photocatalyst with Ultrahigh Photocatalytic H2 Production Activity. Applied Surface Science, 566, Article ID: 150732.
https://doi.org/10.1016/j.apsusc.2021.150732
[16] Zhao, Y., Lu, Y., Chen, L., Wei, X., Zhu, J. and Zheng, Y. (2020) Redox Dual-Cocatalyst-Modified CdS Double- Heterojunction Photocatalysts for Efficient Hydrogen Production. ACS Applied Materials & Interfaces, 12, 46073- 46083.
https://doi.org/10.1021/acsami.0c12790
[17] Chen, W., Wang, Y.H., Liu, M., Gao, L., Mao, L.Q., Fan, Z.Y., et al. (2018) In Situ Photodeposition of Cobalt on CdS Nanorod for Promoting Photocatalytic Hydrogen Production under Visible Light Irradiation. Applied Surface Science, 444, 485-490.
https://doi.org/10.1016/j.apsusc.2018.03.068
[18] Kumar, D.P., Choi, J., Hong, S., Reddy, D.A., Lee, S. and Kim, T.K. (2016) Rational Synthesis of Metal-Organic Framework-Derived Noble Metal-Free Nickel Phosphide Nanoparticles as a Highly Efficient Cocatalyst for Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry & En-gineering, 4, 7158-7166.
https://doi.org/10.1021/acssuschemeng.6b02032
[19] Xu, J.X., Qi, Y.H. and Wang, L. (2019) In Situ Derived Ni2P/Ni Encapsulated in Carbon/g-C3N4 Hybrids from Metal-Organic Frameworks/g-C3N4 for Efficient Photocatalytic Hydrogen Evolution. Applied Catalysis B: Environmental, 246, 72-81.
https://doi.org/10.1016/j.apcatb.2019.01.045
[20] Vamvasakis, I., Papadas, I.T., Tzanoudakis, T., Drivas, C., Choulis, S.A., Kennou, S., et al. (2018) Visible-Light Photocatalytic H2 Production Activity of Β-Ni(OH)2-Modified CdS Mesoporous Nanoheterojunction Networks. ACS Catalysis, 8, 8726-8738.
https://doi.org/10.1021/acscatal.8b01830
[21] Li, Q., Guo, B., Yu, J., Ran, J., Zhang, B., Yan, H., et al. (2011) Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. Journal of the American Chemical Society, 133, 10878-10884.
https://doi.org/10.1021/ja2025454
[22] Liu, J., Liu, Y., Liu, N., Han, Y., Zhang, X., Huang, H., et al. (2015) Water Splitting. Metal-Free Efficient Photocatalyst for Stable Visible Water Splitting via a Two-Electron Pathway. Science, 347, 970-974.
https://doi.org/10.1126/science.aaa3145
[23] Gogoi, D., Koyani, R., Golder, A.K. and Peela, N.R. (2020) Enhanced Photocatalytic Hydrogen Evolution Using Green Carbon Quantum Dots Modified 1-D CdS Nanowires under Visible Light Irradiation. Solar Energy, 208, 966-977.
https://doi.org/10.1016/j.solener.2020.08.061
[24] Shen, Z., Yuan, Y., Pei, L., Yu, Z. and Zou, Z. (2020) Black Phosphorus Photocatalysts for Photocatalytic H2 Generation: A Review. Chemical Engineering Journal, 386, Article ID: 123997.
https://doi.org/10.1016/j.cej.2019.123997
[25] Liu, F., Wang, Z., Weng, Y., Shi, R., Ma, W. and Chen, Y. (2021) Black Phosphorus Quantum Dots Modified CdS Nanowires with Efficient Charge Separation for Enhanced Photocata-lytic H2 Evolution. ChemCatChem, 13, 1355-1361.
https://doi.org/10.1002/cctc.202001847
[26] Zeng, P., Liu, J.Y., Wang, J.M. and Peng, T.Y. (2019) Fabrication of Ni Nanoclusters-Modified Brookite TiO2 Quasi Nanocubes and Its Photocatalytic Hydrogen Evolution Performance. Chinese Journal of Chemical Physics, 32, 625-634.
https://doi.org/10.1063/1674-0068/cjcp1812287
[27] Wang, H., Chen, W., Zhang, J., Huang, C. and Mao, L. (2015) Nickel Nanoparticles Modified CdS—A Potential Photocatalyst for Hydrogen Production through Water Splitting under Visible Light Irradiation. International Journal of Hydrogen Energy, 40, 340-345.
https://doi.org/10.1016/j.ijhydene.2014.11.005
[28] Zhang, H.Z., Dong, Y.M., Zhao, S., Wang, G.L., Jiang, P.P., Zhong, J., et al. (2020) Photochemical Preparation of Atomically Dispersed Nickel on Cadmium Sulfide for Superior Photocatalytic Hydrogen Evolution. Applied Catalysis B-Environmental, 261, Article ID: 118233.
https://doi.org/10.1016/j.apcatb.2019.118233
[29] Zhao, Q., Sun, J., Li, S., Huang, C., Yao, W., Chen, W., et al. (2018) Single Nickel Atoms Anchored on Nitrogen-Doped Graphene as a Highly Active Cocatalyst for Photocatalytic H2 Evolution. ACS Catalysis, 8, 11863-11874.
https://doi.org/10.1021/acscatal.8b03737
[30] Mao, L.Q., Ba, Q.Q., Jia, X.J., Liu, S., Liu, H., Zhang, J., et al. (2019) Ultrathin Ni(OH)2 Nanosheets: A New Strategy for Cocatalyst Design on CdS Surfaces for Photocatalytic Hydrogen Generation. RSC Advances, 9, 1260-1269.
https://doi.org/10.1039/C8RA07307D
[31] Zhang, H.Z., Dong, Y.M., Li, D.D., Wang, G.L., Leng, Y., Zhang, P.B., et al. (2021) Photochemical Synthesis of Ni-Ni(OH)2 Synergistic Cocatalysts Hybridized with CdS Nanorods for Efficient Photocatalytic Hydrogen Evolution. Flatchem, 26, Article ID: 100232.
https://doi.org/10.1016/j.flatc.2021.100232
[32] Zhuang, H., Cai, Z., Xu, W., Zhang, X., Huang, M. and Wang, X. (2019) Constructing 1D CdS Nanorod Composites with High Photocatalytic Hydrogen Production by Introducing the Ni-Based Cocatalysts. Catalysis Communications, 120, 51-54.
https://doi.org/10.1016/j.catcom.2018.11.010
[33] Wang, H., Li, Y., Liu, Z., Liu, J. and Yang, R. (2021) Hydroxy Acid-Assisted Synthesis of Highly Dispersed Ni-NiS on CdS as Effective Photocatalyst for Hydrogen Evolution. Catal-ysis Letters, 151, 1707-1719.
https://doi.org/10.1007/s10562-020-03408-4
[34] Li, C., Naghadeh, S.B., Guo, L., Xu, K., Zhang, J.Z. and Wang, H. (2020) Cellulose as Sacrificial Biomass for Photocatalytic Hydrogen Evolution over One-Dimensional CdS Loaded with NiS2 as a Cocatalyst. ChemistrySelect, 5, 1470-1477.
https://doi.org/10.1002/slct.201904840
[35] He, B., Bie, C., Fei, X., Cheng, B., Yu, J., Ho, W., et al. (2021) Enhancement in the Photocatalytic H2 Production Activity of CdS Nrs by Ag2S and NiS Dual Cocatalysts. Applied Catalysis B: Environmental, 288, Article ID: 119994.
https://doi.org/10.1016/j.apcatb.2021.119994
[36] Ke, X., Dai, K., Zhu, G., Zhang, J. and Liang, C. (2019) In situ Photochemical Synthesis Noble-Metal-Free NiS on CdS-Diethylenetriamine Nanosheets for Boosting Photocatalytic H2 Production Activity. Applied Surface Science, 481, 669-677.
https://doi.org/10.1016/j.apsusc.2019.03.171
[37] Guan, H.J., Zhang, S.S., Cai, X., Gao, Q.Z., Yu, X.Y., Zhou, X.S., et al. (2019) CdS@Ni3S2 Core-Shell Nanorod Arrays on Nickel Foam: A Multifunctional Catalyst for Efficient Electrochemical Catalytic, Photoelectrochemical and Photocatalytic H2 Production Reaction. Journal of Materials Chem-istry A, 7, 2560-2574.
https://doi.org/10.1039/C8TA08837C
[38] Yuan, X., Shen, D., Zhang, Q., Yang, G., Zhang, B., Li, Y., et al. (2020) Highly Exposed (001) Facets Ni(OH)2 Induced Formation of Nickle Phosphide over Cadmium Sulfide Nanorods for Efficient Photocatalytic Hydrogen Evolution. International Journal of Hydrogen Energy, 45, 9397-9407.
https://doi.org/10.1016/j.ijhydene.2020.01.148
[39] Hu, C., Lv, C., Liu, S., Shi, Y., Song, J., Zhang, Z., et al. (2020) Nickel Phosphide Electrocatalysts for Hydrogen Evolution Reaction. Catalysts, 10, 188.
https://doi.org/10.3390/catal10020188
[40] Ray, A., Sultana, S., Paramanik, L. and Parida, K.M. (2020) Recent Advances in Phase, Size, and Morphology-Oriented Nanostructured Nickel Phosphide for Overall Water Splitting. Journal of Materials Chemistry A, 8, 19196-19245.
https://doi.org/10.1039/D0TA05797E
[41] Wang, J.F., Wang, P.F., Hou, J., Qian, J., Wang, C. and Ao, Y.H. (2018) In Situ Surface Engineering of Ultrafine Ni2P Nanoparticles on Cadmium Sulfide for Robust Hydrogen Evolution. Catalysis Science & Technology, 8, 5406-5415.
https://doi.org/10.1039/C8CY00519B
[42] Sun, Z.J., Zheng, H.F., Li, J.S. and Du, P.W. (2015) Extraordinarily Efficient Photocatalytic Hydrogen Evolution in Water Using Semiconductor Nanorods Integrated with Crystalline Ni2P Cocatalysts. Energy & Environmental Science, 8, 2668-2676.
https://doi.org/10.1039/C5EE01310K
[43] Irfan, R.M., Tahir, M.H., Khan, S.A., Shaheen, M.A., Ahmed, G. and Iqbal, S. (2019) Enhanced Photocatalytic H2 Production under Visible Light on Composite Photocatalyst (CdS/Nise Nanorods) Synthesized in Aqueous Solution. Journal of Colloid and Interface Science, 557, 1-9.
https://doi.org/10.1016/j.jcis.2019.09.014
[44] Chen, Z.H., Gong, H.S., Liu, Q.W., Song, M.X. and Huang, C.J. (2019) NiSe2 Nanoparticles Grown in Situ on CdS Nanorods for Enhanced Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry & Engineering, 7, 16720- 16728.
https://doi.org/10.1021/acssuschemeng.9b04173
[45] Wang, G. and Jin, Z. (2019) Function of NiSe2 over CdS Nanorods for Enhancement of Photocatalytic Hydrogen Production—From Preparation to Mechanism. Applied Surface Science, 467, 1239-1248.
https://doi.org/10.1016/j.apsusc.2018.10.239
[46] Du, S., Li, C., Lin, X., Xu, W., Huang, X., Xu, H., et al. (2019) NiSe2 as Co-Catalyst with CdS: Nanocomposites for High-Performance Photodriven Hydrogen Evolution under Visi-ble-Light Irradiation. ChemPlusChem, 84, 999-1010.
https://doi.org/10.1002/cplu.201900380
[47] Sun, Z., Chen, H., Zhang, L., Lu, D. and Du, P. (2016) Enhanced Photocatalytic H2 Production on Cadmium Sulfide Photocatalysts Using Nickel Nitride as a Novel Cocatalyst. Journal of Materials Chemistry A, 4, 13289-13295.
https://doi.org/10.1039/C6TA04696G